[en] Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency <0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency <0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurology
Author, co-author :
van der Zee, J.
Van Langenhove, T.
Kovacs, G.G.
Dillen, L.
Deschamps, W.
Engelborghs, S.
Matej, R.
Vandenbulcke, M.
Sieben, A.
Dermaut, B.
Smets, K.
Van Damme, P.
Merlin, C.
Laureys, A.
Van Den Broeck, M.
Mattheijssens, M.
Peeters, K.
Benussi, L.
Binetti, G.
Ghidoni, R.
Borroni, B.
Padovani, A.
Archetti, S.
Pastor, P.
Razquin, C.
Ortega-Cubero, S.
Hernandez, I.
Boada, M.
Ruiz, A.
de Mendonca, A.
Miltenberger-Miltenyi,, G.
do Couto, F.S.
Sorbi, S.
Nacmias, B.
Bagnoli, S.
Graff, C.
Chiang, H.H.
Thonberg, Hakan
Perneczky, R.
Diehl-Schmid, J.
Alexopoulos, P.
Frisoni, G.B.
Bonvicini, C.
Synofzik, M.
Maetzler, W.
vom Hagen, J.M.
Schols, L.
Haack, T.B.
Strom, T.M.
Prokisch, H.
Dols-Icardo, O
Salmon, Eric ; Université de Liège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et révalid. cogn.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691-702. doi:10.1007/s00401-011-0911-2
Arai T, Nonaka T, Hasegawa M et al (2003) Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62. Neurosci Lett 342:41-44. doi:10.1016/S0304-3940(03) 00216-7 (Pubitemid 36513905)
Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 32:505-514
Chung PYJ, Beyens G, Guañabens N et al (2008) Founder effect in different European countries for the recurrent P392L SQSTM1 mutation in Paget's disease of bone. Calcif Tissue Int 83:34-42. doi:10.1007/s00223-008-9137-2
Cruts M, Gijselinck I, Van Langenhove T et al (2013) Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci 36:450-459. doi:10.1016/j.tins.2013.04.010
Deng HX, Zhai H, Bigio EH et al (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67:739-748
Fecto F, Yan J, Vemula SP et al (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68:1440-1446. doi:10.1001/archneurol.2011.250
Gelpi E, van der Zee J, Turon Estrada A et al (2014) TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol Appl Neurobiol 40:225-230. doi:10.1111/nan.12063
Gennari L, Gianfrancesco F, Di Stefano M et al (2010) SQSTM1 gene analysis and gene-environment interaction in Paget's disease of bone. J Bone Miner Res 25:1375-1384. doi:10.1002/jbmr.31
Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211-223. doi:10.1016/j.ajhg.2013.06.006
Hirano M, Nakamura Y, Saigoh K et al (2013) Mutations in the gene encoding p62 in Japanese patients with amyotrophic lateral sclerosis. Neurology 80:458-463. doi:10.1212/WNL.0b013e31827f0fe5
Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857-864
Kimonis VE, Fulchiero E, Vesa J, Watts G (2008) VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta 1782:744-748. doi:10.1016/j.bbadis.2008. 09.003
Kurihara N, Hiruma Y (2007) Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest 117:133-142. doi:10.1172/JCI28267 (Pubitemid 46048460)
Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12:2085-2090 (Pubitemid 32646250)
Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/ p62) in Paget disease of bone. Am J Hum Genet 70:1582-1588. doi:10.1086/340731 (Pubitemid 34533906)
Le Ber I, Camuzat A, Guerreiro R, Campion D (2013) SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA Neurol 70:1403-1410. doi:10.1001/jamaneurol. 2013.3849
Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1-9 (Pubitemid 26243849)
Mackenzie IRA, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111-113. doi:10.1007/s00401-011-0845-8
Mizuno Y, Amari M, Takatama M et al (2006) Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci 249:13-18. doi:10.1016/j.jns.2006. 05.060 (Pubitemid 44665902)
Mori K, Arzberger T, Grässer FA et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881-893. doi:10.1007/s00401-013-1189-3
Mori K, Weng S-M, Arzberger T et al (2013) The C9orf72 GCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335-1338. doi:10.1126/science.1232927
Nakaso K, Yoshimoto Y, Nakano T et al (2004) Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res 1012:42-51. doi:10.1016/j.brainres.2004.03.029 (Pubitemid 38648897)
Nalbandian A, Donkervoort S, Dec E et al (2011) The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci 45:522-531. doi:10.1007/s12031-011-9627-y
Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546-1554
Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131-24145. doi:10.1074/jbc.M702824200 (Pubitemid 47328003)
Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456-2477. doi:10.1093/brain/awr179
Rubino E, Rainero I, Chiò A et al (2012) SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79:1556-1562. doi:10.1212/WNL.0b013e31826e25df
Shimizu H, Toyoshima Y, Shiga A et al (2013) Sporadic ALS with compound heterozygous mutations in the SQSTM1 gene. Acta Neuropathol 126:453-459. doi:10.1007/s00401-013-1150-5
Synofzik M, Born C, Rominger A, et al. (2013) Targeted high-throughput sequencing identifies a TARDBP mutation as a cause of early-onset FTD without motor neuron disease. Neurobiol Aging 35:1212.e1-5. doi:10.1016/j. neurobiolaging.2013.10.092
Synofzik M, Maetzler W, Grehl T et al (2012) Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 33(2949):e13-e17. doi:10.1016/j.neurobiolaging.2012. 07.002
Tanji K, Zhang H-X, Mori F et al (2012) p62/sequestosome 1 binds to TDP-43 in brains with frontotemporal lobar degeneration with TDP-43 inclusions. J Neurosci Res 90:2034-2042. doi:10.1002/jnr.23081
Teyssou E, Takeda T, Lebon V et al (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol 125:511-522. doi:10.1007/s00401-013-1090-0
Troakes C, Maekawa S, Wijesekera L et al (2011) An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathol Off J Japanese Soc Neuropathol 32:505-514. doi:10.1111/j.1440-1789.2011.01286.x 35
van der Zee J, Gijselinck I, Dillen L et al (2013) A Pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34:363-373. doi:10.1002/humu.22244
van der Zee J, Pirici D, Van Langenhove T et al (2009) Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology 73:626-632
Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817-828. doi:10.3109/07853890.2012.665471
Watts GDJ, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377-381 (Pubitemid 38437260)
Weckx S, Del-Favero J, Rademakers R et al (2005) novoSNP, a novel computational tool for sequence variation discovery. Genome Res 15:436-442. doi:10.1101/gr.2754005 (Pubitemid 40467785)
Zimprich A, Benet-Pagès A, Struhal W et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes lateonset Parkinson disease. Am J Hum Genet 89:168-175
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.