[en] The main dissipation mechanism in superconducting nanowires arises from phase slips. Thus far,
most of the studies focus on long nanowires where coexisting events appear randomly along the
nanowire. In the present work we investigate highly confined phase slips at the contact point of two superconducting leads. Profiting from the high current crowding at this spot, we are able to shrink in-situ the nanoconstriction. This procedure allows us to investigate, in the very same sample, thermally activated phase slips and the probability density function of the switching current I sw needed to trigger an avalanche of events. Furthermore, for an applied current larger than I sw , we unveil the existence of two distinct thermal regimes. One corresponding to efficient heat removal where the constriction and bath temperatures remain close to each other, and another one in which the constriction temperature can be substantially larger than the bath temperature leading to the formation of a hot spot. Considering that the switching current distribution depends on the exact thermal properties of the sample, the identification of different thermal regimes is of utmost importance for properly interpreting the dissipation mechanisms in narrow point contacts.
Research Center/Unit :
Experimental Physics of Nanostructured Materials
Disciplines :
Physics
Author, co-author :
Baumans, Xavier ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Zharinov, Vyacheslav; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Raymenants, Eline
Blanco Alvarez, Sylvain ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Scheerder, Jeroen; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Brisbois, Jérémy ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Massarotti, Davide; Università degli Studi della Campania Luigi Vanvitelli > Dipartimento di Ingegneria Industriale e dell ́ Informazione
Caruso, Roberta; Università degli Studi di Napoli ’Federico II’ > Dipartimento di Fisica “E. Pancini”
Tafuri, Francesco; Università degli Studi di Napoli ’Federico II’ > Dipartimento di Fisica “E. Pancini”
Janssens, Ewald; Katholieke Universiteit Leuven - KUL > Physics and Astronomy
Moshchalkov, Victor; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Van de Vondel, Joris; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Silhanek, Alejandro ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen COST - European Cooperation in Science and Technology
Blundell, S. Magnetism in Condensed Matter (Oxford University Press, Inc., 2001).
Cuesta, J. A., & Sanchez, A. General Non-Existence Theorem for Phase Transitions in One-Dimensional Systems with Short Range Interactions, and Physical Examples of Such Transitions. J. Stat. Phys. 115, 869-893 (2004).
Little, W. A. Decay of Persistent Currents in Small Superconductors. Phys. Rev. 156, 396-403 (1967).
Langer, J. S., & Ambegaokar, V. Intrinsic Resistive Transition in Narrow Superconducting Channels. Phys. Rev. 164, 498-510 (1967).
McCumber, D. E., & Halperin, B. I. Time Scale of Intrinsic Resistive Fluctuations in Thin Superconducting Wires. Phys. Rev. B 1, 1054-1070 (1970).
Bezryadin, A., Lau, C. N., & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971-974 (2000).
Golubev, D. S., & Zaikin, A. D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B 64, 014504 (2001).
Bezryadin, A. Superconductivity in Nanowires: Fabrication and Quantum Transport (Wiley, 2013).
Giordano, N. Dissipation in a one-dimensional superconductor: Evidence for macroscopic quantum tunneling. Phys. Rev. B 41, 6350-6365 (1990).
Pekker, D., Shah, N., Sahu, M., Bezryadin, A., & Goldbart, P. M. Stochastic dynamics of phase-slip trains and superconductiveresistive switching in current-biased nanowires. Phys. Rev. B 80, 214525 (2009).
Meyer, J., & Minnigerode, G. v. Instabilities in the transition curve of current-carrying one-dimensional superconductors. Phys. Lett. A 38, 529-530 (1972).
Shah, N., Pekker, D., & Goldbart, P. M. Inherent Stochasticity of Superconductor-Resistor Switching Behavior in Nanowires. Phys. Rev. Lett. 101, 207001 (2008).
Massarotti, D., et al. Breakdown of the escape dynamics in Josephson junctions. Phys. Rev. B 92, 054501 (2015).
Bezryadin, A., & Goldbart, P. M. Superconducting Nanowires Fabricated Using Molecular Templates. Adv. Mater. 22, 1111-1121 (2010).
Zgirski, M., RIIkonen, K.-P., Touboltsev, V., & Arutyunov, K. Size Dependent Breakdown of Superconductivity in Ultranarrow Nanowires. Nano Lett. 5, 1029-1033 (2005).
Altomare, F., Chang, A. M., Melloch, M. R., Hong, Y., & Tu, C. W. Evidence for Macroscopic Quantum Tunneling of Phase Slips in Long One-Dimensional Superconducting Al Wires. Phys. Rev. Lett. 97, 017001 (2006).
Aref, T., Levchenko, A., Vakaryuk, V., & Bezryadin, A. Quantitative analysis of quantum phase slips in superconducting Mo76Ge24 nanowires revealed by switching-current statistics. Phys. Rev. B 86, 024507 (2012).
Sahu, M., et al. Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nat. Phys. 5, 503-508 (2009).
Baumans, X. D. A., et al. Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration. Nat. Commun. 7, 10560 (2016).
Skocpol, W. J., Beasley, M. R., & Tinkham, M. Phase-slip centers and nonequilibrium processes in superconducting tin microbridges. J. Low Temp. Phys. 16, 145-167 (1974).
Hubler, F., Lemyre, J. C., Beckmann, D., & v. Lohneysen, H. Charge imbalance in superconductors in the low-Temperature limit. Phys. Rev. B 81, 184524 (2010).
Gurevich, A. V., & Mints, R. G. Self-heating in normal metals and superconductors. Rev. Mod. Phys. 59, 941-999 (1987).
Kadin, A. M., Skocpol, W. J., & Tinkham, M. Magnetic field dependence of relaxation times in nonequilibrium superconductors. J. Low Temp. Phys. 33, 481-503 (1978).
Tinkham, M., Free, J. U., Lau, C. N., & Markovic, N. Hysteretic I-V curves of superconducting nanowires. Phys. Rev. B 68, 134515 (2003).
Mints, R. G., & Rakhmanov, A. L. Critical state stability in type-II superconductors and superconducting-normal-metal composites. Rev. Mod. Phys. 53, 551-592 (1981).
Murphy, A., et al. Universal Features of Counting Statistics of Thermal and Quantum Phase Slips in Nanosize Superconducting Circuits. Phys. Rev. Lett. 110, 247001 (2013).
Dubos, P. Josephson critical current in a long mesoscopic S-N-S junction. Phys. Rev. B 63, 064502 (2001).
Kulik, I. O., & Omelyanchuk, A. N. Contribution to the microscopic theory of the josephson effect in superconducting bridges. JETP Lett. 21, 96-67 (1975).
Kulik, I. O., & Omelyanchuk, A. N. Current flow in long superconducting junctions. JETP Lett. 41, 1071-1075 (1975).
Strachan, D. R., et al. Clean Electromigrated Nanogaps Imaged by Transmission Electron Microscopy. Nano Lett. 6, 441-444 (2006).
Ho, P. S., & Kwok, T. Electromigration in metals. Rep. Prog. Phys. 52, 301 (1989).
Blech, I. A. Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47, 1203-1208 (1976).
Bardeen, J. Critical Fields and Currents in Superconductors. Rev. Mod. Phys. 34, 667-681 (1962).
Li, P., et al. Switching Currents Limited by Single Phase Slips in One-Dimensional Superconducting Al Nanowires. Phys. Rev. Lett. 107, 137004 (2011).
Fulton, T. A., & Dunkleberger, L. N. Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760-4768 (1974).
Massarotti, D., et al. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions. Nat. Commun. 6, 7376 (2015).
Kurkijarvi, J. Intrinsic Fluctuations in a Superconducting Ring Closed with a Josephson Junction. Phys. Rev. B 6, 832-835 (1972).
Garg, A. Escape-field distribution for escape from a metastable potential well subject to a steadily increasing bias field. Phys. Rev. B 51, 15592-15595 (1995).
Arfken, G. B., & Weber, H. J. Mathematical Methods for Physicists 4 edn. (Academic Press, Inc., 1995).
Lin, S.-Z., & Roy, D. Role of kinetic inductance in transport properties of shunted superconducting nanowires. J. Phys.: Condens. Matter 25, 325701 (2013).
Aref, T., & Bezryadin, A. Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses. Nanotechnology 22, 395302 (2011).