C. Farhat, M. Lesoinne, and P. LeTallec. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 157(1-2):95-114, 1998.
A. Beckert. Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerospace Science and Technology, 4(1):13-22, 2000.
C. Farhat, K. G. van der Zee, and P. Geuzaine. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17-18):1973-2001, 2006.
F. Palacios, M. R. Colonno, A. C. Aranake, A. Campos, S. R. Copeland, T. D. Economon, A. K. Lonkar, T. W. Lukaczyk, T. W. R. Taylor, and J. J. Alonso. Stanford University Unstructured (SU2): An open-source integrated computational environment for multiphysics simulation and design. In AIAA 51st Aerospace Sciences Meeting, 7-10 January, Grapevine, TX, 2013.
F. Palacios, T. D. Economon, A. C. Aranake, S. R. Copeland, A. K. Lonkar, T. W. Lukaczyk, D. E. Manosalvas, K. R. Naik, A. Santiago Padrn, B. Tracey, A. Variyar, and J. J. Alonso. Stanford university unstructured (SU2): Open-source analysis and design technology for turbulent flows. In AIAA 52nd Aerospace Sciences Meeting, SciTech, 13-17 January, National Harbor, MD, 2014.
T. Economon, F. Palacios, J. Alonso, G. Bansal, D. Mudigere, A. Deshpande, A. Heinecke, and A. Smelyanskiy. Towards High-Performance Optimizations of the Unstructured Open-Source SU2 suite. In AIAA 53rd Aerospace Sciences Meeting, Scitech, 5-9 January, Kissimmee, FL, 2015.
R. Sanchez, R. Palacios, T. D. Economon, H. L. Kline, J. J. Alonso, and F. Palacios. Towards a Fluid-Structure Interaction solver for problems with large deformations within the opensource SU2 suite. In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech, 4-8 Jan, 2016.
J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-Eulerian Methods in Encyclopedia of Computational Mechanics. John Wiley and Sons, 2004.
C. Hirsch. Numerical Computation of Internal and External Flows. Wiley, New York, 1984.
D. C. Wilcox. Turbulence Modeling for CFD. 2nd Ed., DCW Industries, Inc., 1998.
F. M. White. Viscous Fluid Flow. McGraw Hill Inc., New York, 1974.
F. R. Menter. Zonal two equation k - ω, turbulence models for aerodynamic flows. AIAA Paper1993-2906, 1993.
P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. Number AIAA Paper1992-0439, 1992.
A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. Number AIAA Paper1981-1259, 1981.
P. L. Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2):357-372, 1981.
J. M. Weiss, J. P. Maruszewski, and A. S. Wayne. Implicit solution of the Navier-Stokes equation on unstructured meshes. AIAA Paper1997-2103, 1997.
A. Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. Number AIAA Paper1991-1596, 1991.
A. Jameson and S. Schenectady. An assessment of dual-time stepping, time spectral and artificial compressibility based numerical algorithms for unsteady flow with applications to flapping wings. Number AIAA Paper 2009-4273, 2009.
P. D. Thomas and C. K. Lombard. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal, 17(10):1030-1037, October 1979.
J. T. Batina. Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal, 28(8):1381-1388, August 1990.
M. Lesoinne and C. Farhat. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering, 134(1-2):71-90, 1996.
C. Farhat, P. Geuzaine, and C. Grandmont. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems. Journal of Computational Physics, 174(2):669-694, December 2001.
S. A. Morton, R. B. Melville, and M. R. Visbal. Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes. Journal of Aircraft, 35(5):798-805, 1998.
R. T. Biedron and J. L. Thomas. Recent enhancements to the FUN3D flow solver for moving-mesh applications. AIAA Paper 2009-1360, 2009.
M. Geradin and A. Cardnna. Flexible Multibody Dynamics, A Finite Element Approach, chapter Kinematics of Finite Motion. John Wiley & Sons, LTD, 2001.
M. Geradin and D. J. Rixen. Mechanical Vibrations: Theory and Application to Structural Dynamics, chapter Analytical Dynamics of Discrete Systems. Wiley, 2015.
F. Amirouche. Fundamentals of Multibody Dynamics, Theory and Applications, chapter Hamilton-Lagrange and Gibbs-Appel Equations. Birkhauser, 2006.
M. Hojjat, E. Stavropoulou, T. Gallinger, U. Israel, R. Wchner, and Bletzinger K.-U. Fluid Structure Interaction II, volume 73, chapter Fluid-Structure Interaction in the Context of Shape Optimization and Computational Wind Engineering, pages 351-381. Springer Berlin Heidelberg, 2010.
J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, 1997.
J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodríguez-Ferran. Encyclopedia of Computational Mechanics, chapter Arbitrary Lagrangian-Eulerian Methods. John Wiley & Sons, Ltd, 2004.
K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Civil engineering and engineering mechanics series. Prentice-Hall, 1982.
N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3):67-94, 1959.
J. Chung and G. M. Hulbert. Time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. Journal of Applied Mechanics, Transactions ASME, 60(2):371-375, 1993.
S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid-structure algorithms based on Steklov-Poincaré operators. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5797-5812, 2006.
C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. G. Matthies. Nonlinear fluidstructure interaction problem. part I: Implicit partitioned algorithm, nonlinear stability proof and validation examples. Computational Mechanics, 47(3):305-323, 2011.
S. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled aeroelastic problems part II: energy transfer analysis and three-dimensional applications. Computer Methods in Applied Mechanics and Engineering, 190(2425):3147-3170, 2001. Advances in Computational Methods for Fluid-Structure Interaction.
C. Farhat, M. Lesoinne, P. Stern, and S. Lantri. High performance solution of three-dimensional nonlinear aeroelastic problems via parallel partitioned algorithms: Methodology and preliminary results. Advances in Engineering Software, 28(1):43-61, 1997.
C. Farhat and M. Lesoinne. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics and Engineering, 182(34):499-515, 2000.
W. G. Dettmer and D. Perić. A new staggered scheme for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 93(1):1-22, 2013.
M. Von Scheven and E. Ramm. Strong coupling schemes for interaction of thin-walled structures and incompressible flows. International Journal for Numerical Methods in Engineering, 87(1-5):214-231, 2011.
J. Degroote, K.-J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Computers and Structures, 87(11-12):793-801, 2009.
P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering, 190(24-25):3039-3067, 2001.
U. Küttler and W. A. Wall. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics, 43(1):61-72, 2008.
C. Habchi, S. Russeil, D. Bougeard, J.-L. Harion, T. Lemenand, A. Ghanem, D. D. Valle, and H. Peerhossaini. Partitioned solver for strongly coupled fluid-structure interaction. Computers and Fluids, 71:306-319, 2013.
B. M. Irons and R. C. Tuck. A version of the Aitken accelerator for computer iteration. International Journal for Numerical Methods in Engineering, 1:275-277, 1969.
M. J. Smith, D. H. Hodges, and C. E. S. Cesnik. Evaluation of computational algorithms suitable for fluid-structure interactions. Journal of Aircraft, 37(2):282-294, 2000.
J. R. Cebral and R. Löhner. Conservative load projection and tracking for fluid-structure problems. AIAA Journal, 35(4):687-692, 1997.
G. P. Guruswamy. A review of numerical fluids/structures interface methods for computations using high-fidelity equations. Computers and Structures, 80(1):31-41, 2002.
A. de Boer, A. H. van Zuijlen, and H. Bijl. Review of coupling methods for non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 196(8):1515-1525, 2007.
X. Jiao and M. T. Heath. Overlaying surface meshes, part I: Algorithms. International Journal of Computational Geometry and Applications, 14(6):379-402, 2004.
R. K. Jaiman, X. Jiao, P. H. Geubelle, and E. Loth. Assessment of conservative load transfer for fluid-solid interface with non-matching meshes. International Journal for Numerical Methods in Engineering, 64(15):2014-2038, 2005.
S. A. Brown. Displacement Extrapolations for CFD+CSM Aeroelastic Analysis. AIAA Paper, pages 291-300, 1997.
A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology, 5(2):125-134, 2001.
T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. SU2: An Open-Source Suite for Multi-Physics Simulation and Design. AIAA Journal, (accepted), 2015.
G. J. Kennedy and J. R. R. A. Martins. A parallel aerostructural optimization framework for aircraft design studies. Structural and Multidisciplinary Optimization, Volume 50, Issue 6, 2014.
A. Variyar, T. D. Economon, and J. J. Alonso. Multifidelity conceptual design and optimization of strut-braced wing aircraft using physics based methods. 54th AIAA Aerospace Sciences Meeting, 2016.
R. L. Bisplinghoff, H. Ashley, and R. L. Halfman. Aeroelasticity. Dover Publications, 1996.
Anderson J. D. Fundamentals of Aerodynamics, chapter Incompressible Flow over Airfoils. McGraw Hill, Inc., 2011.
Y. C. Fung. An Introduction to the theory of aeroelasticity, chapter Fundamentals of flutter analysis. Dover Publications, 2002.
K. Isogai. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA Journal, 17(7):793-795, 1979.
K. Isogai. Transonic-dip mechanism of flutter of a sweptback wing: part ii. AIAA Journal, 19(9):1240-1242, 1981.
F. Liu, J. Cai, and Y. Zhu. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 38(2):334-342, 2001.
J. J. Alonso and A. Jameson. Fully-implicit time marching aeroelastic solution. In AIAA 32nd Aerospace Sciences Meeting and Exhibit, 10-13 January, 1994.
Z. Biao, Q. Zhide, and G. Chao. Transonic flutter analysis of an airfoil with approximate boundary method. In 26th international congress of the aeronautical sciences, 2008.
J. T. Thomas, K. C. Hall, and E. H. Dowell. Reduced-order aeroelastic modeling using proper-orthogonal decomposition. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics, 1999.
J. Heeg, P. Chwalowski, D. M. Schuster, D. Raveh, A. Jirasek, and M. Dalenbring. Plans and example results for the 2nd AIAA Aeroelastic Prediction Workshop. AIAA Paper, 2015.
B. E. Dansberry, M. H. Durham, R. M. Bennett, D. L. Turnock, E. A. Silva, and J. A. Rivera Jr. Physical properties of the benchmark models program supercritical wing, volume 4457. Citeseer, 1993.
D. J. Piatak and C. S. Cleckner. Oscillating turntable for the measurement of unsteady aerodynamic phenomena. Journal of aircraft, 40(1):181-188, 2003.
R. M. Bennett, C. V. Eckstrom, J. A Rivera Jr, B. E. Dansberry, M. G. Farmer, and M. H. Durham. The benchmark aeroelastic models program: Description and highlights of initial results. 1991.
P. Eliasson and P. Weinerfelt. Recent Applications of the Flow Solver Edge. Proceedings of the 7th Asian CFD Conference, 2007.
W. A. Wall and E. Ramm. Fluid-Structure interaction based upon a stabilized (ALE) finite element method. In E. Oñate S. R. Idelsohn and E. N. Dvorkin (Eds.), editors, Computational Mechanics. New Trends and Applications. CIMNE, Barcelona, Spain, 1998.
H. G. Matthies and J. Steindorf. Partitioned strong coupling algorithms for fluidstructure interaction. Computers & Structures, 81(811):805-812, 2003.
W. Dettmer and D. Perić. A computational framework for fluid-structure interaction: Finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5754-5779, 2006.
C. Wood, A. J. Gil, O. Hassan, and J. Bonet. A partitioned coupling approach for dynamic fluid-structure interaction with applications to biological membranes. International Journal for Numerical Methods in Fluids, 57(5):555-581, 2008.
B. Froehle and P.-O. Persson. A high-order discontinuous Galerkin method for fluidstructure interaction with efficient implicit-explicit time stepping. Journal of Computational Physics, 272:97-104, 2014.