Paper published in a book (Scientific congresses and symposiums)
Unsteady lifting line theory using the Wagner function
Boutet, Johan; Dimitriadis, Grigorios
2017In Proceedings of the 55th AIAA Aerospace Sciences Meeting
 

Files


Full Text
93 SciTech 2017.pdf
Publisher postprint (544.17 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Unsteady aerodynamics; Finite wings; State space model
Abstract :
[en] A method is presented to model the incompressible, attached, unsteady lift and moment acting on a thin three-dimensional wing in the time domain. The model is based on the combination of Wagner theory and lifting line theory trough the unsteady Kutta-Joukowsky theorem. The result is a set of closed form linear ordinary di erential equations that can be solved analytically or using a Runge-Kutta-Fehlberg algorithm. The method is validated against numerical predictions from an unsteady Vortex Lattice method for rectangular and tapered wings undergoing step or oscillatory changes in plunge or pitch. As the aerodynamic loads are written in state space form in the proposed method, they can be easily included in aeroelastic and flight dynamic calculations.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Boutet, Johan ;  Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Dimitriadis, Grigorios  ;  Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Language :
English
Title :
Unsteady lifting line theory using the Wagner function
Publication date :
January 2017
Event name :
55th AIAA Aerospace Sciences Meeting, SciTech 2017
Event organizer :
AIAA
Event place :
Grapevine, Texas, United States
Event date :
From 9-1-2017 to 13-1-2017
Audience :
International
Main work title :
Proceedings of the 55th AIAA Aerospace Sciences Meeting
Publisher :
AIAA, United States
Pages :
AIAA 2017-0493
Funders :
ERC - European Research Council
Funding text :
ERC Starting Grant NoVib 307265
Available on ORBi :
since 03 March 2017

Statistics


Number of views
205 (8 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
3
OpenCitations
 
2
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi