Discovery and characterization of EIIB, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry
Mass spectrometry; Binding; α-conotoxin; nAChRs; Affinity; Ligand
Abstract :
[en] Animal toxins are peptides that often bind with remarkable affinity and selectivity to membrane receptors such as nicotinic acetylcholine receptors (nAChRs). The latter are, for example, targeted by α-conotoxins, a family of peptide toxins produced by venomous cone snails. nAChRs are implicated in numerous physiological processes explaining why the design of new pharmacological tools and the discovery of potential innovative drugs targeting these receptor channels appear so important. This work describes a methodology developed to discover new ligands of nAChRs from complex mixtures of peptides. The methodology was set up by the incubation of Torpedo marmorata electrocyte membranes rich in nAChRs with BSA tryptic digests (>100 peptides) doped by small amounts of known nAChRs ligands (α-conotoxins). Peptides that bind to the receptors were purified and analyzed by MALDI-TOF/TOF mass spectrometry which revealed an enrichment of α-conotoxins in membrane-containing fractions. This result exhibits the binding of α-conotoxins to nAChRs. Negative controls were performed to demonstrate the specificity of the binding. The usefulness and the power of the methodology were also investigated for a discovery issue. The workflow was then applied to the screening of Conus ermineus crude venom, aiming at characterizing new nAChRs ligands from this venom, which has not been extensively investigated to date. The methodology validated our experiments by allowing us to bind two α-conotoxins (α-EI and α-EIIA) which have already been described as nAChRs ligands. Moreover, a new conotoxin, never described to date, was also captured, identified and sequenced from this venom. Classical pharmacology tests by radioligand binding using a synthetic homologue of the toxin confirm the activity of the new peptide, called α-EIIB. The Ki value of this peptide for Torpedo nicotinic receptors was measured at 2.2 ± 0.7 nM.
Disciplines :
Chemistry
Author, co-author :
Echterbille, Julien
Gilles, Nicolas; Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
Araoz, Romulo; Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
Mourier, Gilles; Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
Amar, Muriel; Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
Servent, Denis; Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
De Pauw, Edwin ; Université de Liège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Quinton, Loïc ; Université de Liège > Département de chimie (sciences) > Chimie biologique
Language :
English
Title :
Discovery and characterization of EIIB, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry
Publication date :
May 2017
Journal title :
Toxicon
ISSN :
0041-0101
eISSN :
1879-3150
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
FP7 - 278346 - VENOMICS - High-throughput peptidomics and transcriptomics of animal venoms for discovery of novel therapeutic peptides and innovative drug development
Funders :
DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation CE - Commission Européenne
Armishaw, C.J., Alewood, P.F., Conotoxins as Research tools and drug leads. Curr. Protein Pept. Sci. 6 (2005), 221–240, 10.2174/1389203054065437.
Aronstam, R.S., Witkop, B., Anatoxin-a interactions with cholinergic synaptic molecules. Proc. Natl. Acad. Sci. 78 (1981), 4639–4643.
Cologna, C., Gilles, N., Echterbille, J., Degueldre, M., Servent, D., de Pauw, E., Quinton, L., Mass-spectrometry-based method for screening of new peptide ligands for G-protein-coupled receptors. Anal. Bioanal. Chem. 407 (2015), 5299–5307, 10.1007/s00216-015-8692-4.
de Moraes, M.C., Vanzolini, K.L., Cardoso, C.L., Cass, Q.B., New trends in LC protein ligand screening. J. Pharm. Biomed. Anal. 87 (2014), 155–166, 10.1016/j.jpba.2013.07.021.
Dunlop, J., Bowlby, M., Peri, R., Vasilyev, D., Arias, R., High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 7 (2008), 358–368.
Ershov, P., Mezentsev, Y., Gnedenko, O., Mukha, D., Yantsevich, A., Britikov, V., Kaluzhskiy, L., Yablokov, E., Molnar, A., Ivanov, A., Lisitsa, A., Gilep, A., Usanov, S., Archakov, A., Protein interactomics based on direct molecular fishing on paramagnetic particles: experimental simulation and SPR validation. Proteomics 12 (2012), 3295–3298, 10.1002/pmic.201200135.
Favreau, P., Krimm, I., Le Gall, F., Bobenrieth, M.-J., Lamthanh, H., Bouet, F., Servent, D., Molgo, J., Menez, A., Letourneux, Y., Lancelin, J.-M., Biochemical characterization and nuclear magnetic resonance structure of novel α-conotoxins isolated from the venom of Conus consors. Biochemistry 38 (1999), 6317–6326, 10.1021/bi982817z.
Feig, A.L., Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers 87 (2007), 293–301, 10.1002/bip.20816.
Fonfría, E.S., Vilariño, N., Espiña, B., Louzao, M.C., Álvarez, M., Molgó, J., Aráoz, R., Botana, L.M., Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes. Anal. Chim. Acta 657 (2010), 75–82, 10.1016/j.aca.2009.10.027.
Fu, H.-Y., Yuan, J., Zhou, X.-M., Sun, Y.-B., Huang, Y.-J., Hou, L.-P., Song, C.-Y., Yang, B.-A., Zhen, P., Gao, R., Mao, P.-Y., Lin, L.-Z., Xu, S.-F., Xiao, H.-Z., Wei, K.-H., Determination of hepatocellular carcinoma Serum polypeptide based on antibody pre-concentration coupled with mass spectrometry. Chin. J. Anal. Chem. 40 (2012), 1803–1806, 10.1016/S1872-2040(11)60590-2.
Gerzanich, V., Peng, X., Wang, F., Wells, G., Anand, R., Fletcher, S., Lindstrom, J., Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. Mol. Pharmacol., 48, 1995, 774 LP-782.
Heus, F., Giera, M., de Kloe, G.E., van Iperen, D., Buijs, J., Nahar, T.T., Smit, A.B., Lingeman, H., de Esch, I.J.P., Niessen, W.M.A., Irth, H., Kool, J., Development of a microfluidic confocal fluorescence detection system for the hyphenation of nano-LC to on-line biochemical assays. Anal. Bioanal. Chem. 398 (2010), 3023–3032, 10.1007/s00216-010-4210-x.
Heus, F., Otvos, A.R., Aspers, L.R., van Elk, R., Halff, I.J., Ehlers, W.A., Dutertre, S., Lewis, J.R., Wijmenga, S., Smit, B.A., Niessen, M.W., Kool, J., Miniaturized bioaffinity assessment coupled to mass spectrometry for guided purification of bioactives from toad and cone snail. Biol. (Basel), 2014, 10.3390/biology3010139.
Heus, F., Vonk, F., Otvos, R.A., Bruyneel, B., Smit, A.B., Lingeman, H., Richardson, M., Niessen, W.M.A., Kool, J., An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity. Toxicon 61 (2013), 112–124, 10.1016/j.toxicon.2012.11.002.
Hill, J.A., Oanh, N.H., Changeux, J.P., Serine-specific phosphorylation of nicotinic receptor associated 43K protein. Biochemistry 30 (1991), 5579–5585, 10.1021/bi00236a034.
Kombo, D.C., Bencherif, M., Comparative study on the use of docking and bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes. J. Chem. Inf. Model 53 (2013), 3212–3222, 10.1021/ci400493a.
Marszałł, M.P., Buciński, A., Kruszewski, S., Ziomkowska, B., A new approach to determine camptothecin and its analogues affinity to human Serum Albumin. J. Pharm. Sci. 100 (2011), 1142–1146, 10.1002/jps.22318.
Martinez, J.S., Olivera, B.M., Gray, W.R., Craig, A.G., Groebe, D.R., Abramson, S.N., McIntosh, J.M., alpha.-Conotoxin EI, a new nicotinic acetylcholine receptor antagonist with novel selectivity. Biochemistry 34 (1995), 14519–14526, 10.1021/bi00044a030.
McFadden, M.J., Junop, M.S., Brennan, J.D., Magnetic “fishing” assay to screen small-molecule mixtures for modulators of Protein−Protein interactions. Anal. Chem. 82 (2010), 9850–9857, 10.1021/ac102164d.
McIntosh, M., Cruz, L.J., Hunkapiller, M.W., Gray, W.R., Olivera, B.M., Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 218 (1982), 329–334, 10.1016/0003-9861(82)90351-4.
Middleton, R.E., Cohen, J.B., Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 30 (1991), 6987–6997, 10.1021/bi00242a026.
Molgó, J., Aráoz, R., Benoit, E., Iorga, B.I., Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin. Drug Discov. 8 (2013), 1203–1223, 10.1517/17460441.2013.822365.
Otvos, R.A., Heus, F., Vonk, F.J., Halff, J., Bruyneel, B., Paliukhovich, I., Smit, A.B., Niessen, W.M.A., Kool, J., Analytical workflow for rapid screening and purification of bioactives from venom proteomes. Toxicon 76 (2013), 270–281, 10.1016/j.toxicon.2013.10.013.
Otvos, R.A., Mladic, M., Arias-Alpizar, G., Niessen, W.M.A., Somsen, G.W., Smit, A.B., Kool, J., At-line cellular screening methodology for bioactives in mixtures targeting the α7-nicotinic acetylcholine receptor. J. Biomol. Screen 21 (2016), 459–467, 10.1177/1087057115625307.
Otvos, R.A., van Nierop, P., Niessen, W.M.A., Kini, R.M., Somsen, G.W., Smit, A.B., Kool, J., Development of an online cell-based bioactivity screening method by coupling Liquid chromatography to flow cytometry with parallel mass spectrometry. Anal. Chem. 88 (2016), 4825–4832, 10.1021/acs.analchem.6b00455.
Prashanth, J.R., Brust, A., Jin, A.-H., Alewood, P.F., Dutertre, S., Lewis, R.J., Cone snail venomics: from novel biology to novel therapeutics. Future Med. Chem. 6 (2014), 1659–1675, 10.4155/fmc.14.99.
Puch, C.B.M. du, Barbier, E., Kraut, A., Couté, Y., Fuchs, J., Buhot, A., Livache, T., Sève, M., Favier, A., Douki, T., Gasparutto, D., Sauvaigo, S., Breton, J., TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs. Arch. Biochem. Biophys. 507 (2011), 296–303, 10.1016/j.abb.2010.12.021.
Quinton, L., Servent, D., Girard, E., Molgó, J., Le Caer, J.-P., Malosse, C., Haidar, E.A., Lecoq, A., Gilles, N., Chamot-Rooke, J., Identification and functional characterization of a novel α-conotoxin (EIIA) from Conus ermineus. Anal. Bioanal. Chem. 405 (2013), 5341–5351, 10.1007/s00216-013-6926-x.
Retra, K., Geitmann, M., Kool, J., Smit, A.B., de Esch, I.J.P., Danielson, U.H., Irth, H., Development of surface plasmon resonance biosensor assays for primary and secondary screening of acetylcholine binding protein ligands. Anal. Biochem. 407 (2010), 58–64, 10.1016/j.ab.2010.06.021.
Rodríguez, L.P., Vilariño, N., Molgó, J., Aráoz, R., Antelo, A., Vieytes, M.R., Botana, L.M., Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry. Anal. Chem. 83 (2011), 5857–5863, 10.1021/ac200423s.
Rodríguez, L.P., Vilariño, N., Molgó, J., Aráoz, R., Louzao, M.C., Taylor, P., Talley, T., Botana, L.M., Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system. Anal. Chem. 85 (2013), 2340–2347, 10.1021/ac3033432.
Slon-Usakiewicz, J.J., Ng, W., Dai, J.-R., Pasternak, A., Redden, P.R., Frontal affinity chromatography with MS detection (FAC-MS) in drug discovery. Drug Discov. Today 10 (2005), 409–416, 10.1016/S1359-6446(04)03360-4.
Taly, A., Corringer, P.-J., Guedin, D., Lestage, P., Changeux, J.-P., Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 8 (2009), 733–750.
Tao, Y., Zhang, Y., Cheng, Y., Wang, Y., Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 27 (2013), 148–155, 10.1002/bmc.2761.
Temporini, C., Ceruti, S., Calleri, E., Ferrario, S., Moaddel, R., Abbracchio, M.P., Massolini, G., Development of an immobilized GPR17 receptor stationary phase for binding determination using frontal affinity chromatography coupled to mass spectrometry. Anal. Biochem. 384 (2009), 123–129, 10.1016/j.ab.2008.09.010.
Temporini, C., Massolini, G., Marucci, G., Lambertucci, C., Buccioni, M., Volpini, R., Calleri, E., Development of new chromatographic tools based on A2A adenosine receptor subtype for ligand characterization and screening by FAC-MS. Anal. Bioanal. Chem. 405 (2013), 837–845, 10.1007/s00216-012-6353-4.
Terlau, H., Olivera, B., Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84 (2004), 41–68, 10.1152/physrev.00020.2003.
Tsetlin, V., Kasheverov, I., Peptide and protein neurotoxin toolbox in research on nicotinic acetylcholine receptors. Heinbockel, T., (eds.) Neurochemistry, 2014, InTech, 10.5772/58240 p. open access on the internet.
Vilariño, N., Fonfría, E.S., Molgó, J., Aráoz, R., Botana, L.M., Detection of gymnodimine-a and 13-desmethyl C spirolide phycotoxins by fluorescence polarization. Anal. Chem. 81 (2009), 2708–2714, 10.1021/ac900144r.
Vorontsov, E., Samgina, T., Gorshkov, V., Poljakov, N., Nifant'ev, I., Lebedev, A., Matrix-assisted laser desorption/ionization-post source decay fragmentation of cystine-containing amphibian peptides with novel cysteine tags. Eur. J. Mass Spectrom. 17 (2011), 73–83.
Wanner, K., Höfner, G., Mass Spectrometry in Medicinal Chemistry. 2007, Wiley-VCH, Weinheim.
Whitehurst, C.E., Annis, D.A., Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors. Comb. Chem. High. Throughput Screen 11 (2008), 427–438.