High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery
Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurieet al.
2017 • In Microbial Cell Factories, 16 (6), p. 1-15
Disulphide bonds; High-throughput production; Venom peptides; Drug discovery library; Escherichia coli (E. coli); Periplasm
Abstract :
[en] Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics.
RESULTS:
In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active.
CONCLUSIONS:
Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large libraries of recombinant disulphide-reticulated peptides of remarkable interest for drug discovery programs.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Turchetto, Jeremy
Sequeira, Ana Filipa; CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
Ramond, Laurie; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
Peysson, Fanny; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
Bras, Joana L.A.; NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
Saez, Natalie J.; 1 Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France > 2 Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072 Australia
Duhoo, +Johan; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
Blémont; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
Guerreiro, Catarina; NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
Quinton, Loïc ; Université de Liège > Département de chimie (sciences) > Chimie biologique
De Pauw, Edwin ; Université de Liège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Gilles, Nicolas; CEA/DRF/iBiTecS, Service d’Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
Darbon, Hervé; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
Fontes, Carlos MGA; NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
Vincentelli, Renaud; Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery
FP7 - 278346 - VENOMICS - High-throughput peptidomics and transcriptomics of animal venoms for discovery of novel therapeutic peptides and innovative drug development
Name of the research project :
VENOMICS
Funders :
DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation CE - Commission Européenne Union Européenne
Escoubas P, King GF. Venomics as a drug discovery platform. Expert Rev Proteom. 2009;6:221-4.
Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583:1736-43.
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469-84.
Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790-802.
Terrat Y, Sunagar K, Fry BG, Jackson TNW, Scheib H, Fourmy R, et al. Atractaspis aterrima toxins: the first insight into the molecular evolution of venom in side-stabbers. Toxins (Basel). 2013;5:1948-64.
Dutertre S, Jin A, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomicsreveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteom. 2013;12:312-29.
Brinkman DL, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box jellyfish chironex fleckeri. Plos ONE. 2012;7:e47866.
King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52:264-76.
Lavergne V, Alewood PF, Mobli M, King GF. The structural universe of disulfide-rich venom peptides. RSC Drug Discov. 2015;37:79.
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009;8:26.
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif. 2012;12:249-58.
Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, et al. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact. 2013;12:37.
Sequeira AF, Turchetto J, Saez NJ, Peysson F, Ramond L, Duhoo Y, et al. Gene design, fusion technology and TEV cleavage site influence the expression of disulphide-rich venom peptides in Escherichia coli. Microb Cell Fact. 2017;16. doi: 10.1186/s12934-016-0618-0.
Saez NJ, Nozach H, Blemont M, Vincentelli R. High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. Jove-J Vis Exp. 2014;89:1-15.
Saez NJ, Vincentelli R. High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol (Clifton, NJ). 2014;1091:33-53.
Van Den Berg S, Löfdahl PÅ, Härd T, Berglund H. Improved solubility of TEV protease by directed evolution. J Biotechnol. 2006;121:291-8.
LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 2010;38:2522-40.
Quinton L, Gilles N, De Pauw E. TxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom. J Proteom. 2009;72:219-26.
Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, et al. X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol. 2007;366:586-601.
Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15-28.
Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81:136-47.
Takacs Z, York N. Animal venoms in medicine. 3rd ed. Encycl Toxicol; 2014.
Dutertre S, Undheim EAB, Pineda SS, Jin A-H, Lavergne V, Fry BG, et al. Venoms-based drug discovery: proteomic and transcriptomic approaches. RSC Drug Discov. 2015;11:80-96.
Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193-200.
Escoubas P, Quinton L, Nicholson GM. Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom. 2008;43:279-95.
Saaem I, Ma S, Quan J, Tian J. Error correction of microchip synthesized genes using Surveyor nuclease. Nucleic Acids Res. 2012;40:1-8.
Ma S, Saaem I, Tian J. Error correction in gene synthesis technology. Trends Biotechnol. 2012;30:147-54.
Schwartz JJ, Lee C, Shendure J. Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nat Methods. 2012;9:913-5.
Wan W, Li L, Xu Q, Wang Z, Yao Y, Wang R, et al. Error removal in microchip-synthesized DNA using immobilized MutS. Nucleic Acids Res. 2014;42:e102.
Xiong A-S, Peng R-H, Zhuang J, Gao F, Li Y, Cheng Z-M, et al. Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol Rev. 2008;32:522-40.
Fuhrmann M, Oertel W, Berthold P, Hegemann P. Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res. 2005;33:e58.
Carr PA, Church G. Genome engineering. Nat Biotechnol. 2009;27:1151-62.