smart meter; phase identification; low-voltage distribution networks
Abstract :
[en] This paper highlights the importance of the knowledge of the phase identification for the different measurement points inside a low-voltage distribution network. Besides considering existing solutions, we propose a novel method for identifying the phases of the measurement devices, based exclusively on voltage measurement correlation. It relies on graph theory and the notion of maximum spanning tree. It has been tested on a real Belgian LV network, first with simulated unbalanced voltage for which it managed to correctly identify the phases of all measurement points, second, on preliminary data from a real measurement campaign for which it shows encouraging results.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Electrical & electronics engineering
Author, co-author :
Olivier, Frédéric ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Ernst, Damien ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Fonteneau, Raphaël ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Language :
English
Title :
Automatic phase identification of smart meter measurement data
Publication date :
June 2017
Event name :
CIRED 2017
Event organizer :
The IET
Event place :
Glasgow, United Kingdom
Event date :
du 12 juin 2017 au 15 juin 2017
Main work title :
Proceedings of the 24th International Conference and Exhibition on Electricity Distribution, CIRED 2017
Peer review/Selection committee :
Peer reviewed
Name of the research project :
PREMASOL
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
Walling, R. A., Saint, R., Dugan, R. C., et al.: 'Summary of distributed resources impact on power delivery systems', IEEE Trans. Power Deliv., 2008, 23, (3), pp. 1636-1644
Olivier, F., Aristidou, P., Ernst, D., et al.: 'Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units', IEEE Trans. Smart Grid, 2016, 7, (2), pp. 926-936
Liao T., Warren: 'Clustering of time series data-a survey', Pattern Recognit., 2005, 38, (11), pp. 1857-1874
Wright, A., Firth, S.: 'The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations', Appl. Energy, 2007, 84, (4), pp. 389-403
Prim, R. C.: 'Shortest connection networks and some generalizations', Bell Syst. Tech. J., 1957, 36, (6), pp. 1389-1401
Ciric, R. M., Feltrin, A. P., Ochoa, L. F.: 'Power flow in four-wire distribution networks-general approach', IEEE Trans. Power Syst., 2003, 18, (4), pp. 1283-1290
Widén, J., Wäckelgård, E.: 'A high-resolution stochastic model of domestic activity patterns and electricity demand', Appl. Energy, 2010, 87, (6), pp. 1880-1892