Carney, S.L., Muir, H., The structure and function of cartilage proteoglycans. Physiol Rev 68 (1988), 858–910.
Eyre, D., Collagen of articular cartilage. Arthritis Res 4 (2002), 30–35.
Bay-Jensen, A.C., Hoegh-Madsen, S., Dam, E., Henriksen, K., Sondergaard, B.C., Pastoureau, P., et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?. Rheumatol Int 30 (2010), 435–442.
Archer, C.W., Francis-West, P., The chondrocyte. Int J Biochem Cell Biol 35 (2003), 401–404.
Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P.M., Knorr, T., Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis. Methods Mol Med 100 (2004), 109–128.
Chen-An, P., Andreassen, K.V., Henriksen, K., Karsdal, M.A., Bay-Jensen, A.C., Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model. Rheumatol Int 33 (2013), 401–411.
Mobasheri, A., Matta, C., Zakany, R., Musumeci, G., Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80 (2015), 237–244.
Agrawal, G.K., Jwa, N.S., Lebrun, M.H., Job, D., Rakwal, R., Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10 (2010), 799–827.
Gharbi, M., Deberg, M., Henrotin, Y., Application for proteomic techniques in studying osteoarthritis: a review. Front Physiol, 2, 2011, 90.
Aslam, B., Basit, M., Nisar, M.A., Khurshid, M., Rasool, M.H., Proteomics: technologies and their applications. J Chromatogr Sci 55 (2017), 182–196.
Crutchfield, C.A., Thomas, S.N., Sokoll, L.J., Chan, D.W., Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics, 13, 2016, 1.
Peffers, M.J., Beynon, R.J., Clegg, P.D., Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 14 (2013), 20658–20681.
Lourido, L., Calamia, V., Mateos, J., Fernandez-Puente, P., Fernandez-Tajes, J., Blanco, F.J., et al. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis. J Proteome Res 13 (2014), 6096–6106.
Svala, E., Lofgren, M., Sihlbom, C., Ruetschi, U., Lindahl, A., Ekman, S., et al. An inflammatory equine model demonstrates dynamic changes of immune response and cartilage matrix molecule degradation in vitro. Connect Tissue Res 56 (2015), 315–325.
Williams, A., Smith, J.R., Allaway, D., Harris, P., Liddell, S., Mobasheri, A., Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1beta. Arthritis Res Ther, 15, 2013, R223.
Hermansson, M., Sawaji, Y., Bolton, M., Alexander, S., Wallace, A., Begum, S., et al. Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. J Biol Chem 279 (2004), 43514–43521.
Clutterbuck, A.L., Smith, J.R., Allaway, D., Harris, P., Liddell, S., Mobasheri, A., High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation. J Proteomics 74 (2011), 704–715.
Polacek, M., Bruun, J.A., Johansen, O., Martinez, I., Differences in the secretome of cartilage explants and cultured chondrocytes unveiled by SILAC technology. J Orthop Res 28 (2010), 1040–1049.
Swan, A.L., Hillier, K.L., Smith, J.R., Allaway, D., Liddell, S., Bacardit, J., et al. Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning. BMC Musculoskelet Disord, 14, 2013, 349.
Peffers, M.J., Thornton, D.J., Clegg, P.D., Characterization of neopeptides in equine articular cartilage degradation. J Orthop Res 34 (2016), 106–120.
Calamia, V., Lourido, L., Fernandez-Puente, P., Mateos, J., Rocha, B., Montell, E., et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res Ther, 14, 2012, R202.
Calamia, V., Mateos, J., Fernandez-Puente, P., Lourido, L., Rocha, B., Fernandez-Costa, C., et al. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci Rep, 4, 2014, 5069.
Catterall, J.B., Rowan, A.D., Sarsfield, S., Saklatvala, J., Wait, R., Cawston, T.E., Development of a novel 2D proteomics approach for the identification of proteins secreted by primary chondrocytes after stimulation by IL-1 and oncostatin M. Rheumatology (Oxford) 45 (2006), 1101–1109.
Riffault, M., Moulin, D., Grossin, L., Mainard, D., Magdalou, J., Vincourt, J.B., Label-free relative quantification applied to LC-MALDI acquisition for rapid analysis of chondrocyte secretion modulation. J Proteomics 114 (2015), 263–273.
Stenberg, J., Ruetschi, U., Skioldebrand, E., Karrholm, J., Lindahl, A., Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Sci, 11, 2013, 43.
Rocha, B., Calamia, V., Casas, V., Carrascal, M., Blanco, F.J., Ruiz-Romero, C., Secretome analysis of human mesenchymal stem cells undergoing chondrogenic differentiation. J Proteome Res 13 (2014), 1045–1054.
Lourido, L., Calamia, V., Fernandez-Puente, P., Mateos, J., Oreiro, N., Blanco, F.J., et al. Secretome analysis of human articular chondrocytes unravels catabolic effects of nicotine on the joint. Proteomics Clin Appl, 2016, 671–680.
Taylor, D.W., Ahmed, N., Parreno, J., Lunstrum, G.P., Gross, A.E., Diamandis, E.P., et al. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes. Tissue Eng Part A 21 (2015), 683–693.
Haglund, L., Bernier, S.M., Onnerfjord, P., Recklies, A.D., Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biol 27 (2008), 107–118.
Polacek, M., Bruun, J.A., Elvenes, J., Figenschau, Y., Martinez, I., The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transpl 20 (2011), 1381–1393.
Polacek, M., Bruun, J.A., Johansen, O., Martinez, I., Comparative analyses of the secretome from dedifferentiated and redifferentiated adult articular chondrocytes. Cartilage 2 (2011), 186–196.
Onnerfjord, P., Khabut, A., Reinholt, F.P., Svensson, O., Heinegard, D., Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem 287 (2012), 18913–18924.
Ikeda, D., Ageta, H., Tsuchida, K., Yamada, H., iTRAQ-based proteomics reveals novel biomarkers of osteoarthritis. Biomarkers 18 (2013), 565–572.
Muller, C., Khabut, A., Dudhia, J., Reinholt, F.P., Aspberg, A., Heinegard, D., et al. Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biol 40 (2014), 34–45.
Tsolis, K.C., Bei, E.S., Papathanasiou, I., Kostopoulou, F., Gkretsi, V., Kalantzaki, K., et al. Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis. Clin Proteomics, 12, 2015, 12.
Cillero-Pastor, B., Eijkel, G.B., Kiss, A., Blanco, F.J., Heeren, R.M., Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheum 65 (2013), 710–720.
Hsueh, M.F., Khabut, A., Kjellstrom, S., Onnerfjord, P., Kraus, V.B., Elucidating the molecular composition of cartilage by proteomics. J Proteome Res, 2015.
Font, B., Eichenberger, D., Rosenberg, L.M., van der Rest, M., Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix Biol 15 (1996), 341–348.
Johansen, J.S., Hvolris, J., Hansen, M., Backer, V., Lorenzen, I., Price, P.A., Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid levels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br J Rheumatol 35 (1996), 553–559.
Vaananen, T., Koskinen, A., Paukkeri, E.L., Hamalainen, M., Moilanen, T., Moilanen, E., et al. YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediat Inflamm, 2014, 2014, 215140.
Zivanovic, S., Rackov, L.P., Vojvodic, D., Vucetic, D., Human cartilage glycoprotein 39–biomarker of joint damage in knee osteoarthritis. Int Orthop 33 (2009), 1165–1170.
Steck, E., Braun, J., Pelttari, K., Kadel, S., Kalbacher, H., Richter, W., Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage. Matrix Biol 26 (2007), 30–41.
Deckers, M.M., Smits, P., Karperien, M., Ni, J., Tylzanowski, P., Feng, P., et al. Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone 28 (2001), 14–20.
Han, Z., Ni, J., Smits, P., Underhill, C.B., Xie, B., Chen, Y., et al. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15 (2001), 988–994.
Fujimoto, N., Terlizzi, J., Aho, S., Brittingham, R., Fertala, A., Oyama, N., et al. Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity protein/protein interactions. Exp Dermatol 15 (2006), 300–307.
Attur, M., Yang, Q., Shimada, K., Tachida, Y., Nagase, H., Mignatti, P., et al. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13. FASEB J 29 (2015), 4107–4121.
Chijimatsu, R., Kunugiza, Y., Taniyama, Y., Nakamura, N., Tomita, T., Yoshikawa, H., Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet Disord, 16, 2015, 215.
Peffers, M.J., Cillero-Pastor, B., Eijkel, G.B., Clegg, P.D., Heeren, R.M., Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Res Ther, 16, 2014, R110.
Wei, Z., Li, H.H., IGFBP-3 may trigger osteoarthritis by inducing apoptosis of chondrocytes through Nur77 translocation. Int J Clin Exp Pathol 8 (2015), 15599–15610.
Yates, M.P., Settle, S.L., Yocum, S.A., Aggarwal, P., Vickery, L.E., Aguiar, D.J., et al. IGFBP-5 metabolism is disrupted in the rat medial meniscal tear model of osteoarthritis. Cartilage 1 (2010), 43–54.
Gazzerro, E., Pereira, R.C., Jorgetti, V., Olson, S., Economides, A.N., Canalis, E., Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology 146 (2005), 655–665.
Pufe, T., Groth, G., Goldring, M.B., Tillmann, B., Mentlein, R., Effects of pleiotrophin, a heparin-binding growth factor, on human primary and immortalized chondrocytes. Osteoarthritis Cartilage 15 (2007), 155–162.
Bouderlique, T., Henault, E., Lebouvier, A., Frescaline, G., Bierling, P., Rouard, H., et al. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis. PLoS One, 9, 2014, e88287.
Struglics, A., Larsson, S., Pratta, M.A., Kumar, S., Lark, M.W., Lohmander, L.S., Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthritis Cartilage 14 (2006), 101–113.
Zhen, E.Y., Brittain, I.J., Laska, D.A., Mitchell, P.G., Sumer, E.U., Karsdal, M.A., et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 58 (2008), 2420–2431.
Peffers, M.J., McDermott, B., Clegg, P.D., Riggs, C.M., Comprehensive protein profiling of synovial fluid in osteoarthritis following protein equalization. Osteoarthritis Cartilage 23 (2015), 1204–1213.
Chamberland, A., Wang, E., Jones, A.R., Collins-Racie, L.A., LaVallie, E.R., Huang, Y., et al. Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo. J Biol Chem 284 (2009), 27352–27359.
Endo, W., Arito, M., Sato, T., Kurokawa, M.S., Omoteyama, K., Iizuka, N., et al. Effects of sulfasalazine and tofacitinib on the protein profile of articular chondrocytes. Mod Rheumatol 24 (2014), 844–850.
Ben-Aderet, L., Merquiol, E., Fahham, D., Kumar, A., Reich, E., Ben-Nun, Y., et al. Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Res Ther, 17, 2015, 69.
Kamphorst, J.J., van der Heijden, R., DeGroot, J., Lafeber, F.P., Reijmers, T.H., van El, B., et al. Profiling of endogenous peptides in human synovial fluid by NanoLC-MS: method validation and peptide identification. J Proteome Res 6 (2007), 4388–4396.
Li, W.W., Nemirovskiy, O., Fountain, S., Rodney Mathews, W., Szekely-Klepser, G., Clinical validation of an immunoaffinity LC-MS/MS assay for the quantification of a collagen type II neoepitope peptide: a biomarker of matrix metalloproteinase activity and osteoarthritis in human urine. Anal Biochem 369 (2007), 41–53.
van Spil, W.E., Jansen, N.W., Bijlsma, J.W., Reijman, M., DeGroot, J., Welsing, P.M., et al. Clusters within a wide spectrum of biochemical markers for osteoarthritis: data from CHECK, a large cohort of individuals with very early symptomatic osteoarthritis. Osteoarthritis Cartilage 20 (2012), 745–754.
Duan, Y., Hao, D., Li, M., Wu, Z., Li, D., Yang, X., et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int 32 (2012), 985–990.
Streich, N.A., Zimmermann, D., Schmitt, H., Bode, G., Biochemical markers in the diagnosis of chondral defects following anterior cruciate ligament insufficiency. Int Orthop 35 (2011), 1633–1637.
Gobezie, R., Kho, A., Krastins, B., Sarracino, D.A., Thornhill, T.S., Chase, M., et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther, 9, 2007, R36.
Mateos, J., Lourido, L., Fernandez-Puente, P., Calamia, V., Fernandez-Lopez, C., Oreiro, N., et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF. J Proteomics 75 (2012), 2869–2878.
Ritter, S.Y., Subbaiah, R., Bebek, G., Crish, J., Scanzello, C.R., Krastins, B., et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum 65 (2013), 981–992.
Fernandez-Puente, P., Mateos, J., Fernandez-Costa, C., Oreiro, N., Fernandez-Lopez, C., Ruiz-Romero, C., et al. Identification of a panel of novel serum osteoarthritis biomarkers. J Proteome Res 10 (2011), 5095–5101.
De Ceuninck, F., Marcheteau, E., Berger, S., Caliez, A., Dumont, V., Raes, M., et al. Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech 16 (2005), 256–265.
Henrotin, Y., Gharbi, M., Mazzucchelli, G., Dubuc, J.E., De Pauw, E., Deberg, M., Fibulin 3 peptides Fib3-1 and Fib3-2 are potential biomarkers of osteoarthritis. Arthritis Rheum 64 (2012), 2260–2267.
Honsawek, S., Wilairatana, V., Udomsinprasert, W., Sinlapavilawan, P., Jirathanathornnukul, N., Association of plasma and synovial fluid periostin with radiographic knee osteoarthritis: cross-sectional study. Jt Bone Spine 82 (2015), 352–355.
Rousseau, J.C., Sornay-Rendu, E., Bertholon, C., Garnero, P., Chapurlat, R., Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study. Osteoarthritis Cartilage 23 (2015), 1736–1742.
Fernandez-Costa, C., Calamia, V., Fernandez-Puente, P., Capelo-Martinez, J.L., Ruiz-Romero, C., Blanco, F.J., Sequential depletion of human serum for the search of osteoarthritis biomarkers. Proteome Sci, 10, 2012, 55.
Anderson, H.C., Garimella, R., Tague, S.E., The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10 (2005), 822–837.
Pap, T., Bertrand, J., Syndecans in cartilage breakdown and synovial inflammation. Nat Rev Rheumatol 9 (2013), 43–55.
Lotz, M., Hashimoto, S., Kuhn, K., Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 7 (1999), 389–391.
Heraud, F., Heraud, A., Harmand, M.F., Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 59 (2000), 959–965.
Kim, H.A., Blanco, F.J., Cell death and apoptosis in osteoarthritic cartilage. Curr Drug Targets 8 (2007), 333–345.
Okumura, A., Saito, T., Otani, I., Kojima, K., Yamada, Y., Ishida-Okawara, A., et al. Suppressive role of leukocyte cell-derived chemotaxin 2 in mouse anti-type II collagen antibody-induced arthritis. Arthritis Rheum 58 (2008), 413–421.
Gago-Fuentes, R., Fernandez-Puente, P., Megias, D., Carpintero-Fernandez, P., Mateos, J., Acea, B., et al. Proteomic analysis of connexin 43 reveals novel interactors related to osteoarthritis. Mol Cell Proteomics 14 (2015), 1831–1845.