[en] Detailed topographic data have become widely available for inundation mapping. While the use of such high-resolution data enables the computation of flow variables at a fine scale, the computation time remains too high for many practical applications. In contrast, models solving the shallow-water equations with porosity provide a useful tool to improve the computational efficiency, while preserving to some extent the detailed topographic information through porosity parameters. In this study, we present a new model solving the fully dynamic shallow water equations with anisotropic porosity based on Cartesian grids. Using a Cartesian grid leads to specific challenges, particularly as regards the definition of the conveyance porosities at the cell edges. Moreover, the presented model is further improved by a merging method so as to increase the computational efficiency without affecting the overall accuracy. The performance of the model has been evaluated based on a wide range of test cases, which confirm the validity of the model and the benefits of such a modelling framework.
Disciplines :
Civil engineering
Author, co-author :
Bruwier, Martin ; Université de Liège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Archambeau, Pierre ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Erpicum, Sébastien ; Université de Liège > Scientifiques attachés au Doyen (Sc.appliquées)
Pirotton, Michel ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Shallow water model with anisotropic porosity for flood modelling on Cartesian grids
Publication date :
June 2017
Event name :
4th International Symposium of Shallow Flows
Event organizer :
Eindhoven University Technology
Event place :
Eindhoven, Netherlands
Event date :
du 26 juin 2017 au 28 juin 2017
Audience :
International
Name of the research project :
ARC - Floodland
Funders :
ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.