Copyright 2017 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
All documents in ORBi are protected by a user license.
[en] In our contribution, we outline the different steps in the design of a fiber-fed spectrographic instrument
for stellar astrophysics. Starting from the derivation of theoretical relationships from the scientific requirements
and telescope characteristics, the entire optical design of the spectrograph is presented. Specific optical
elements, such as a toroidal lens, are introduced to improve the instrument’s efficiency. Then the verification
of predicted optical performances is investigated through optical analyses, such as resolution checking.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège Groupe d'Astrophysique des Hautes Energies - GAPHE Astrophysique Stellaire Théorique et Astérosismologie - ASTA
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Kintziger, Christian ; Université de Liège > Département d'aérospatiale et mécanique > Instrumentation et expérimentation spatiales
Desselle, Richard ; Université de Liège > Département d'aérospatiale et mécanique > Instrumentation et expérimentation spatiales
Loicq, Jerôme ; Université de Liège > CSL (Centre Spatial de Liège)
Rauw, Grégor ; Université de Liège > Groupe d'astrophysique des hautes énergies (GAPHE)
Rochus, Pierre ; Université de Liège > CSL (Centre Spatial de Liège)
Language :
English
Title :
Conception of a near-infrared spectrometer for ground-based observations of massive stars
Publication date :
21 February 2017
Journal title :
Journal of Astronomical Telescopes, Instruments, and Systems
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. M. Vreux and Y. Andrillat, "O stars He II and H lines in the 1 ? region," Astron. Astrophys. 75, 93-96 (1979).
J.-M. Vreux, Y. Andrillat, and E. Biémont, "Near-infrared observations of galactic northernWolf Rayet stars," Astron. Astrophys. 238, 207-220 (1990).
J. H. Groh, A. Damineli, and F. Jablonski, "Spectral atlas of massive stars around He I 10830 Å," Astron. Astrophys. 465, 993-1002 (2007).
I. R. Stevens and I. D. Howarth, "Infrared line-profile variability in Wolf-Rayet binary systems," Mon. Not. R. Astron. Soc. 302, 549-560 (1999).
C. I. Short and J. G. Doyle, "Pa-beta as a chromospheric diagnostic inM dwarfs," Astron. Astrophys. 331, L5-L8 (1998).
C. Liefke, A. Reiners, and J. H. M. M. Schmitt, "Magnetic field variations and a giant flare multiwavelength observations of CN Leo," Mem. Soc. Astron. Ital. 78, 258-260 (2007).
S. J. Schmidt et al., "The first detection of time-variable infrared line emission during M dwarf flares," in American Astronomical Society, AAS Meeting, Vol. 43, 21832604 (2011).
D. Choudhary, U. Tejomoortula, and M. J. Penn, "Dynamics of quiet solar chromosphere at the limb," in American Geophysical Union Fall Meeting, SH23A-1622 (2008).
M. Cuntz and D. G. Luttermoser, "Stochastic shock waves as a candidate mechanism for the formation of the He I 10830-A line in cool giant stars," Astrophys. J. 353, L39-L43 (1990).
A. K. Dupree, D. D. Sasselov, and J. B. Lester, "Discovery of a fast wind from a field population II giant star," Astrophys. J. 387, L85-L88 (1992).
J. Kwan, S. Edwards, and W. Fischer, "Modeling T Tauri winds from He I ?10830 profiles," Astrophys. J. 657, 897-915 (2007).
L. Podio, P. J. V. Garcia, and F. Bacciotti, "He I ? 10830 line: a probe of the accretion/ejection activity in RU Lupi," Mem. Soc. Astron. Ital. 78, 693-694 (2007).
J. H. M. M. Schmitt et al., "TIGRE: a new robotic spectroscopy telescope at Guanajuato, Mexico," Astron. Nachr. 335(8), 787-796 (2014).
A. Hempelmann, "TIGRE telescope-general information," Universität Hamburg, 2013, http://www.hs.uni-hamburg.de/EN/Ins/HRT/hrt-general- info.html (11 May 2016).
J. Hearnshaw, Astronomical Spectrographs and Their History, p. 60, Cambridge University Press, Cambridge (2009).
M. W. McDowell, "Design of Czerny-Turner spectrographs using divergent grating illumination," Opt. Acta: Int. J. Opt. 22(5), 473-475 (1975).
R. E. Bell, "Exploiting a transmission grating spectrometer," Rev. Sci. Instrum. 75(10), 4158-4161 (2004).
R. G. Bingham, "Grating spectrometers and spectrographs re-examined," Q. J. R. Astron. Soc. 20, 395-421 (1979).
E. Carrasco and I. R. Parry, "A method for determining the focal ratio degradation of optical fibres for astronomy," Mon. Not. R. Astron. Soc. 271(1), 1-12 (1994).
S. C. Barden, "Fiber optics at Kitt Peak National Observatory," in Instrumentation for Ground-Based Optical Astronomy, pp. 250-255, Springer, New York (1988).
C. D. Allemand, "Coma correction in Czerny-Turner spectrographs," J. Opt. Soc. Am. 58(2), 159-163 (1968).
"Application-Specific Optical Design," 2016, https://optics.synopsys. com/codev/pdfs/ApplicationSpecificDesign.pdf (13 July 2013).
Q. Xue, S. Wang, and F. Lu "Aberration-corrected Czerny-Turner imaging spectrometer with a wide spectral region," Appl. Opt. 48, 11-16 (2009).
A. B. Shafer, L. R. Megill, and L. Droppleman, "Optimization of the Czerny-Turner spectrometer," J. Opt. Soc. Am. 54, 879-887 (1964).
D. R. Austin, T. Witting, and I. A. Walmsley, "Broadband astigmatismfree Czerny-Turner imaging spectrometer using spherical mirrors," Appl. Opt. 48(19), 3846-3853 (2009).
K. S. Lee, K. P. Thompson, and J. P. Rolland, "Broadband astigmatismcorrected Czerny-Turner spectrometer," Opt. Express 18, 23378-23384 (2010).
"ASAP Reference Guide (2014)," http://www.breault.com/knowledgebase/ asap-reference-guide-2014 (15 August 2014).
F. Kerber, G. Nave, and C. J. Sansonetti, "The spectrum of Th-Ar hollow cathode lamps in the 691-5804 nm region: establishing wavelength standards for the calibration of infrared spectrographs," Astrophys. J., Suppl. Ser. 178(2), 374-381 (2008).
R. Engleman, Jr., K. H. Hinkle, and L.Wallace, "The near-infrared spectrum of a Th/Ar hollow cathode lamp," J. Quant. Spectrosc. Radiat. Transfer 78(1), 1-30 (2003).
G. Rossi and N. Omenetto, "Feasibility of using a uranium hollow cathode lamp as primary source in atomic absorption spectroscopy," European Atomic Energy Community, Ispra, Italy, Joint Nuclear Research Center, No. EUR-3558. e (1967).
S. L. Redman et al., "The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra," Astrophys. J., Suppl. Ser. 195(2), 24 (2011).
S. L. Redman et al., "A high-resolution atlas of uranium-neon in the h band," Astrophys. J., Suppl. Ser. 199(1), 2 (2012).
L. F. Sarmiento et al., "Characterizing U-Ne hollow cathode lamps at near-IR wavelengths for the CARMENES survey," Proc. SPIE 9147, 914754 (2014).
S. K. Ramsay et al., "Calibration of the KMOS multi-field imaging spectrometer," in Proc. 2007 ESO Instrument Calibration Workshop, pp. 319-324 (2008).
C. G. Wynne and S. P. Worswick, "Atmospheric dispersion correctors at the Cassegrain focus," Mon. Not. R. Astron. Soc. 220, 657-670 (1986).
G. P. Szokoly, "Optimal slit orientation for long multiobject spectroscopic exposures," Astron. Astrophys. 443(2), 703-707 (2005).
P. E. Ciddor, "Refractive index of air: new equations for the visible and near infrared," Appl. Opt. 35(9), 1566-1573 (1996).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.