[en] In this paper, structural, magnetic, and magnetocaloric properties of zinc-doped nickel ferrite,
Zn1−xNixFe2O4 (x = 0.3 and 0.4) were investigated. The samples were prepared using solid-state reaction. X-ray diffraction (XRD) and magnetization measurements were
performed to study crystallographic structure and magnetic properties. For a magnetic field changing from 0 to 5 T, the corresponding isothermal entropy change was found to be near 1.4 J/kg K for both samples. The decreasing of Ni content from x = 0.4 to 0.3, enables to shift the Curie temperature of Zn1−xNixFe2O4 from 450 K toward (325 K). As main results, it was found that the relative cooling power (RCP) could be significantly enhanced by changing
Ni concentration in Zn1−xNixFe2O4 (505 J/kg (for x = 0.3) and 670 J/kg (for x = 0.4)), which is considered as a recommended parameter for a wide temperature range in magnetic refrigeration application. Our finding should inspire and open new ways for the enhancement of the magnetocaloric effect in spinel ferrite-based materials.
Disciplines :
Chemistry
Author, co-author :
El Maalam, Khadija
Fkhar, lahcen
Mohammed, Hamedoun
Mahmoud, Abdelfattah ; Université de Liège > Département de chimie (sciences) > LCIS - GreenMAT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Wang, G.F., Li, L.R., Zhao, Z.R., Yu, X.Q., Zhang, X.F.: Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3(Ln =La, Pr and Nd) nanoparticles. Ceram. Int. 40, 16449–16454 (2014)
Engelbrecht, K., Bahl, C. R. H., Nielsen, K. K.: Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators. Int. J. Refrig. 34, 1132–1140 (2011)
Clot, P., Viallet, D., Allab, F., Kedous-Lebouc, A., Fournier, J. M., Yonnet, J. P.: A magnet-based device for active magnetic regenerative refrigeration. IEEE Trans. Magn. 39, 3349–3351 (2003)
Hcini, S, Boudard, M., Zemni, S., Oumezzine, M.: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3manganites. Ceram. Int. 40, 16041–16050 (2014)
Balli, M., Fruchart, D., Gignoux, D., Miraglia, S., Hlil, E. K., Wolfers, P.: Modelling of the magnetocaloric effect in Gd1−xTbx and MnAs compounds. J. Magn. Magn. Mater. 316(2 SPEC. ISS.), 558–561 (2007)
Zhang, C. L., Wang, D. H., Han, Z. D., Xuan, H. C., Gu, B. X., Du, Y. W.: Large magnetic entropy changes in Gd-Co amorphous ribbons. J. Appl. Phys. 105(1), 5–9 (2009)
Zhong, X. C., Tang, P. F., Liu, Z. W., Zeng, D. C., Zheng, Z. G., Yu, H. Y., Qiu, W. Q., Zou, M.: Magnetic properties and large magnetocaloric effect in Gd-Ni amorphous ribbons for magnetic refrigeration applications in intermediate temperature range. J. Alloys Compd. 509(24), 6889–6892 (2011)
Dong, Q. Y., Shen, B. G., Chen, J., Shen, J., Wang, F., Zhang, H. W., Sun, J. R.: Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys. J. Appl. Phys. 105(5), 053908 (2009)
Zhong, X. C., Tang, P. F., Liu, Z. W., Zeng, D. C., Zheng, Z. G., Yu, H. Y., Qiu, W. Q., Zhang, H., Ramanujan, R. V.: Large magnetocaloric effect and refrigerant capacity in Gd-Co-Ni metallic glasses. J. Appl. Phys. 111(7), 7–10 (2012)
Tegus, O., Brück, E., Buschow, K. H. J., de Boer, F. R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002)
Gschneider, K. A. Jr., Pecharsky, V. K., Tsokol, A. O.: Recent developments in magnetocaloric materials. Reports Prog. Phys. 68(6), 1479–1539 (2005)
Albertini, F., Canepa, F., Cirafici, S., Franceschi, E. A., Napoletano, M., Paoluzi, A., Pareti, L., Solzi, M.: Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys. J. Magn. Magn. Mater. 272–276, 2111–2112 (2004)
Wada, H., Tanabe, Y.: Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001)
Fujita, A., Fukamichi, K.: Control of large magnetocaloric effects in metamagnetic La(FexSi1−x)13 compounds by hydrogenation. J. Alloys Compd. 404?-406(SPEC. ISS.), 554?-558 (2005)
Bjørk, R., Bahl, C. R. H., Katter, M.: Magnetocaloric properties of LaFe13-x-yCoxSiy and commercial grade Gd. J. Magn. Magn. Mater. 322(24), 3882–3888 (2010)
Mamiya, H., Terada, N., Furubayashi, T., Suzuki, H. S., Kitazawa, H.: Influence of random substitution on magnetocaloric effect in a spinel ferrite. J. Magn. Magn. Mater. 1322(9–12), 1561–1564 (2010)
Oumezzine, E., Hcini, S., Baazaoui, M., Hlil, E. K., Oumezzine, M.: Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol. 278, 189–195 (2015)
El Maalam, K., Ben Ali, M., El Moussaoui, H., Mounkachi, O., Hamedoun, M., Masrour, R., Hlil, E. K., Benyoussef, A.: Magnetic properties of tin ferrites nanostructures doped with transition metal. J. Alloys Compd. 622, 761–764 (2015)
Phan, M. H., Yu, S. C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)
Pankhurst, Q. A., Connolly, J., J. S. K, Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)
Hamedoun, M., Benyoussef, a., Bousmina, M.: Magnetic properties and phase diagram of ZnxNi1−xFe2O4: High-temperature series expansions. J. Magn. Magn. Mater. 322(21), 3227–3235 (2010)
Hajalilou, A., Mazlan, S. A.: A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 122(7), 680 (2016)
Chau, N., Thuan, N. K., Minh, D. L., Luong, N. H.: Effects of Zn content on the magnetic and magnetocaloric properties of Ni-Zn ferrites, VNU. J. Sci. Math. - Phys. 24, 155–162 (2008)
Urcia-Romero, S., Perales-Ṕrez, O., Gutírrez, G.: Effect of Dy-doping on the structural and magnetic properties of Co-Zn ferrite nanocrystals for magnetocaloric applications. J. Appl. Phys. 107(9), 3–6 (2010)
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)
Mahmud, S. T., Akther Hossain, A. K. M., Abdul Hakim, A. K. M., Seki, M., Kawai, T., Tabata, H.: Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite. J. Magn. Magn. Mater. 305(1), 269–274 (2006)
Sheikh, A. D., Mathe, V. L.: Anomalous electrical properties of nanocrystalline Ni-Zn ferrite. J. Mater. Sci. 43(6), 2018–2025 (2008)
Shinde, T. J., Gadkari, A. B., Vasambekar, P. N.: Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)
Mangalaraja, R. V., Lee, S. T., Ananthakumar, S., Manohar, P., Camurri, C. P.: Effect of composition on initial permeability of Ni1-xZnxFe2O4 prepared by flash combustion technique. Mater. Sci. Eng. A 1476(1–2), 234–239 (2008)
Banerjee, S. K.: On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)
Phan, M.-H., Peng, H.-X., Yu, S.-C.: Large magnetocaloric effect in single crystal Pr0.63Sr0.37MnO3. J. Appl. Phys. 97(10, Pt. 3), 10M306/1–10M306/3 (2005)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.