Awedem, W.F., Achu, M.B.L., Happi, E.T., Nutritive value of three varieties of banana and plantain blossoms from Cameroon. Greener J Agr Sci 5:2 (2015), 052–061, 10.15580/GJAS.2015.2.012115009.
Awedem, W.F., Happi, E.T., Fokou, E., Boda, M., Gillet, S., Deleu, M., et al. Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Conv Bioref, 2016, 10.1007/s13399-016-0222-x.
Baiardo, M., Frisoni, G., Scandola, M., Licciardello, A., Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83 (2002), 38–45.
Bardiya, N., Somayaji, D., Khanna, S., Biomethanation of banana peel and pineapple waste. Bioresour Technol 58 (1996), 73–76.
Chanakya, H.N., Sreesha, M., Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energy Sustain Dev 16 (2012), 231–235.
Chanakya, H.N., Sharma, I., Ramachandra, T.V., Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste. Waste Manag 29 (2009), 1306–1312.
Chananchida, N., Ubonrat, S., Nipon, P., Production of hydrogen and methane from banana peel by two phase anaerobic fermentation. Energy Procedia 50 (2014), 702–710.
Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Standard methods for examination of water & wastewater. 20th ed, 1999, Am Public Health Assoc, Washington, DC.
Cordeiro, N., Oliveira, L., Evtuguin, D., Silvestre, A.J.D., Structural characterization of stalk lignin from banana plant. Ind Crop Prod 29:1 (2009), 86–95, 10.1016/j.indcrop.2008.04.012.
Dionisi, D., Anderson, J.A., Aulenta, F., Mccue, A., Paton, G., The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:3 (2015), 366–371.
Escarnot, E., Agneessens, R., Wathelet, B., Paquot, M., Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem 122 (2010), 857–863.
Kamdem, I., Tomekpe, K., Thonart, P., Production potentielle de bioéthanol, de biométhane et de pellets a' partir des de'chets de biomasse lignocellulosique du bananier (Musa spp.) au Cameroun. Biotechnol Agron Soc Environ 15:3 (2011), 461–473.
Kamdem, I., Hiligsmann, S., Vanderghem, C., Bilik, I., Paquot, M., Thonart, P., Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants. World J Microbiol Biotechnol 29 (2013), 2259–2270.
Oliveira, L., Cordeiro, N., Evtuguin, D.V., Torres, I.C., Silvestre, A.J.D., Chemical composition of different morphological parts from “Dwarf Cavendish” banana plant and their potential as non-wood renewable source of natural products. Ind Crop Prod 26 (2007), 163–172.
Reddy, V.G., Ravindra, P.B., Komaraiah, P., Roy, K.R.R.M., Kothari, I.L., Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38 (2003), 1457–1462.
Saikia, D.C., Goswami, T., Saikia, C.N., Wild banana plants (Musa spp.) as source of fibre for paper and cordage industries. J Sci Ind Res 56 (1997), 408–413.
Stover, R.H., Simmonds, N.W., Classification of banana cultivars. Stover, R.H., Simmonds, N.W., (eds.) Bananas, 3rd ed., 1987, Wiley, New York, 97–103.
Tiappi, D.M.F., Happi, E.T., Tchokouassom, R., Vanderghem, C., Aguedo, M., Gillet, S., et al. Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Conv Bioref, 2015, 10.1007/S13399-015-0158-6.
Uma, S., Kalpana, S., Sathiamoorthy, S., Kumar, V., Evaluation of commercial cultivars of banana (Musa spp.) for their suitability for the fibre industry. Plant Genet Resour Newsl 142 (2005), 29–35.