[en] We present the results of a multiple organizational level analysis conceived to identify acclimative/ adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily uctuations in the
light environment, at contrasting depths. We assessed changes in photophysiological parameters,
leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong di erences in the light environment. The photochemical pathway of energy use was more e ective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic di erentiation between
deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-speci c diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.
Research Center/Unit :
Stareso
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Procaccini, Gabriele; Stazione Zoologica Anton Dohrn, Naples, Italy
Ruocco, Miriam; Stazione Zoologica Anton Dohrn, Naples, Italy
Marin-Guirao, Lazaro; Stazione Zoologica Anton Dohrn, Naples, Italy
Dattolo, Emanuela; Stazione Zoologica Anton Dohrn, Naples, Italy
Brunet, Christophe; Stazione Zoologica Anton Dohrn, Naples, Italy
Esposito, Daniela; Stazione Zoologica Anton Dohrn, Naples, Italy
lauritano, Chiara; Stazione Zoologica Anton Dohrn, Naples, Italy
Mazzuca, Silvia; Universitá della Calabria, Rende, Italy
Serra, Illia Anna; Universitá della Calabria, Rende, Italy
Bernardo, Letizia; Universitá della Calabria, Rende, Italy
Piro, Amalia; Universitá della Calabria, Rende, Italy
Beer, Sven; Tel Aviv University, Tel Aviv, Israel.
Bjork, Mats; Stockholm University, Stockholm, Sweden
Gullstrom, Martin; Stockholm University, Stockholm, Sweden
Buapet, Pimchanok; Stockholm University, Stockholm, Sweden
Rasmusson, Lina; Stockholm University, Stockholm, Sweden
Feliberto, Paulo; LARSyS, University of Algarve, Faro, Portugal
Gobert, Sylvie ; Université de Liège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Runcie, John; University of Sydney, Sydney, Australia.
Silva, Joao; CCMAR, University of Algarve, Faro, Portugal
Olive, Irene; CCMAR, University of Algarve, Faro, Portugal
Costa, Monya; CCMAR, University of Algarve, Faro, Portugal
Barrote, Isabel; CCMAR, University of Algarve, Faro, Portugal
Santos, Rui; CCMAR, University of Algarve, Faro, Portugal
COST - European Cooperation in Science and Technology MIUR - Ministero dell'Istruzione, dell'Università e della Ricerca FCT - Foundation for Science and Technology
Funding text :
Acknowledgements
We thank the ESF COST Action (ES0906) Seagrass Productivity: From Genes to Ecosystem Management for the funds provided and all the participants to the October 2011 WG1 and WG2 Workshop: linking seagrass productivity, community metabolism, and ecosystem carbon fluxes, for their fruitful discussions. We also thank the MIUR Italian Flagship project RITMARE and the Marie Curie project HeatGrass (EU, FP7-PEOPLE2013-IEF). The study received Portuguese funds from FCT - Foundation for Science and Technology through project UID/Multi/04326/2013. This paper is the MARE publication number 352. D.D’E. and M.R. were supported by a SZN PhD fellowship via the Open University.
Green, E. P. & Short, F. T. World Atlas of Seagrasses. (University of California Press, 2003).
Costanza, R. et al. The value of the world's ecosystem services and natural capital. Nature 387, 253-260 (1997).
Costanza, R. et al. Changes in the global value of ecosystem services. Global Environmental Change 26, 152-158, doi: http://dx.doi. org/10.1016/j.gloenvcha.2014.04.002 (2014).
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169-193, doi: 10.1890/10-1510.1 (2010).
Migliaccio, M., Martino, F. D., Silvestre, F. & Procaccini, G. Meadow-scale genetic structure in Posidonia oceanica. Marine Ecology Progress Series 304, 55-65, doi: 10.3354/meps304055 (2005).
Arnaud-Haond, S. et al. Implications of extreme life span in clonal organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PloS One 7, e30454, doi: 10.1371/journal.pone.0030454 (2012).
Collier, C. J., Lavery, P. S., Ralph, P. J. & Masini, R. J. Physiological characteristics of the seagrass Posidonia sinuosa along a depthrelated gradient of light availability. Marine Ecology Progress Series 353, 65-79, doi: 10.3354/meps07171 (2008).
Olesen, B., Enríquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Marine Ecology Progress Series 236, 89-97, doi: 10.3354/meps236089 (2002).
Silva, J., Barrote, I., Costa, M. M., Albano, S. & Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PloS One 8, e81058, doi: 10.1371/journal.pone.0081058 (2013).
Alcoverro, T., Cerbian, E. & Ballesteros, E. The photosynthetic capacity of the seagrass Posidonia oceanica: influence of nitrogen and light. Journal of Experimental Marine Biology and Ecology 261, 107-120, doi: http://dx.doi.org/10.1016/S0022-0981(01)00267-2 (2001).
Drew, E. A. Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in the mediterranean. Journal of Experimental Marine Biology and Ecology 31, 173-194, doi: http:// dx.doi.org/10.1016/0022-0981(78)90128-4 (1978).
Mazzuca, S. et al. Seagrass light acclimation: 2-DE protein analysis in Posidonia leaves grown in chronic low light conditions. Journal of Experimental Marine Biology and Ecology 374, 113-122, doi: 10.1016/j.jembe.2009.04.010 (2009).
Dattolo, E. et al. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Frontiers in Plant Science 4, 195, doi: 10.3389/fpls.2013.00195 (2013).
Dattolo, E. et al. Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Marine Environmental Research 101, 225-236, doi: http://dx.doi.org/10.1016/j. marenvres.2014.07.010 (2014).
McClung, C. R. Plant Circadian Rhythms. The Plant Cell Online 18, 792-803, doi: 10.1105/tpc.106.040980 (2006).
McClung, C. R. Circadian rhythms in plants. Annual Review of Plant Physiology and Plant Molecular Biology 52, 139-162, doi: 10.1146/annurev.arplant.52.1.139 (2001).
Covington, M., Maloof, J., Straume, M., Kay, S. & Harmer, S. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology 9, R130 (2008).
Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630-633, doi: 10.1126/science.1115581 (2005).
Ralph, P. J., Gademann, R. & Dennison, W. C. In situ seagrass photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Marine Biology 132, 367-373, doi: 10.1007/s002270050403 (1998).
Silva, J. & Santos, R. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Marine Ecology Progress Series 257, 37-44, doi: 10.3354/meps257037 (2003).
Runcie, J. W. et al. Photosynthetic responses of Halophila stipulacea to a light gradient. I. In situ energy partitioning of nonphotochemical quenching. Aquatic Biology 7, 143-152, doi: 10.3354/ab00164 (2009).
Figueroa, F. L. et al. Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Marine Ecology Progress Series 230, 59-70, doi: 10.3354/meps230059 (2002).
Enríquez, S., Merino, M. & Iglesias-Prieto, R. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Marine Biology 140, 891-900, doi: 10.1007/s00227-001-0760-y (2002).
Campbell, S. J., McKenzie, L. J., Kerville, S. P. & Bité, J. S. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuarine, Coastal and Shelf Science 73, 551-562, doi: 10.1016/j.ecss.2007.02.014 (2007).
Sharon, Y., Levitan, O., Spungin, D., Berman-Frank, I. & Beer, S. Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnology and Oceanography 56, 357-362, doi: 10.4319/lo.2011.56.1.0357 (2011).
Sharon, Y. & Beer, S. Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates. Aquatic Botany 88, 273-276, doi: http://dx.doi.org/10.1016/j.aquabot.2007.11.006 (2008).
Krause, G. H. & Jahns, P. In Chlorophyll a Fluorescence Vol. 19 Advances in Photosynthesis and Respiration (eds GeorgeChristos, Papageorgiou & Govindjee) Ch. 18, 463-495 (Springer Netherlands, 2004).
Mazzuca, S. et al. Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes. Frontiers in Plant Science 4, 38, doi: 10.3389/fpls.2013.00038 (2013).
Demmig-Adams, B. & Adams, W. W. III The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1, 21-26, doi: http://dx.doi.org/10.1016/S1360-1385(96)80019-7 (1996).
Demmig-Adams, B. & Adams, W. W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist 172, 11-21 (2006).
Demmig-Adams, B., Ebbert, V., Zarter, C. R. & Adams, W. W. III In Photoprotection, photoinhibition, gene regulation, and environment 39-48 (Springer, 2008).
Adams, W. W. III, Zarter, C. R., Mueh, K. E. & Demmig-Adams, B. In Photoprotection, photoinhibition, gene regulation, and environment 49-64 (Springer, 2008).
Bonente, G., Howes, B. D., Caffarri, S., Smulevich, G. & Bassi, R. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. Journal of Biological Chemistry 283, 8434-8445 (2008).
Li, X.-P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391-395 (2000).
Niyogi, K. K., Li, X.-P., Rosenberg, V. & Jung, H.-S. Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany 56, 375-382, doi: 10.1093/jxb/eri056 (2005).
Ikeuchi, M., Uebayashi, N., Sato, F. & Endo, T. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. Plant and Cell Physiology 55, 1286-1295, doi: 10.1093/pcp/pcu069 (2014).
Roach, T. & Krieger-Liszkay, A. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817, 2158-2165, doi: http://dx.doi.org/10.1016/j. bbabio.2012.09.011 (2012).
Hennessey, T. L. & Field, C. B. Circadian rhythms in photosynthesis: oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiology 96, 831-836, doi: 10.1104/pp.96.3.831 (1991).
Goulard, F., Lüning, K. & Jacobsen, S. Circadian rhythm of photosynthesis and concurrent oscillations of transcript abundance of photosynthetic genes in the marine red alga Grateloupia turuturu. European Journal of Phycology 39, 431-437, doi: 10.1080/09670260400009908 (2004).
Dodd, A., Kusakina, J., Hall, A., Gould, P. & Hanaoka, M. The circadian regulation of photosynthesis. Photosynthesis Research 119, 181-190, doi: 10.1007/s11120-013-9811-8 (2014).
Millar, A. J. & Kay, S. A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 93, 15491-15496 (1996).
Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488-1490, doi: 10.1126/science.282.5393.1488 (1998).
Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology 13, 616-622, doi: http://www.nature.com/ncb/journal/v13/n5/abs/ncb2219.html#supplementary-information (2011).
Mulo, P., Sakurai, I. & Aro, E.-M. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: From transcription to PSII repair. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817, 247-257, doi: http://dx.doi.org/10.1016/j. bbabio.2011.04.011 (2012).
Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143, 113-134, doi: http://dx.doi.org/10.1016/0005-2728(93)90134-2 (1993).
Baena-González, E. & Aro, E.-M. Biogenesis, assembly and turnover of photosystem II units. Philosophical Transactions of the Royal Society B: Biological Sciences 357, 1451-1460, doi: 10.1098/rstb.2002.1141 (2002).
Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany 106, 1-16, doi: 10.1093/aob/mcq059 (2010).
Järvi, S., Suorsa, M. & Aro, E.-M. Photosystem II repair in plant chloroplasts - Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, 900-909, doi: http://dx.doi. org/10.1016/j.bbabio.2015.01.006 (2015).
Muneer, S., Park, Y. G., Manivannan, A., Soundararajan, P. & Jeong, B. R. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences 15, 21803-21824, doi: 10.3390/ijms151221803 (2014).
Barber, J. & Andersson, B. Too much of a good thing: light can be bad for photosynthesis. Trends in Biochemical Sciences 17, 61-66, doi: http://dx.doi.org/10.1016/0968-0004(92)90503-2 (1992).
Asada, K. The water-water cycle in chloroplasts:: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50, 601-639, doi: 10.1146/annurev.arplant.50.1.601 (1999).
Mayfield, S. P., Rahire, M., Frank, G., Zuber, H. & Rochaix, J. D. Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 84, 749-753 (1987).
Yang, E. J. et al. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochemical and Biophysical Research Communications 305, 862-868, doi: http://dx.doi.org/10.1016/S0006-291X(03)00851-9 (2003).
Martino-Catt, S. & Ort, D. R. Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proceedings of the National Academy of Sciences of the United States of America 89, 3731-3735 (1992).
Watillon, B., Kettmann, R., Boxus, P. & Burny, A. Developmental and circadian pattern of rubisco activase mRNA accumulation in apple plants. Plant Molecular Biology 23, 501-509, doi: 10.1007/BF00019298 (1993).
Liu, Z., Taub, C. C. & McClung, C. R. Identification of an Arabidopsis thaliana ribulose-1, 5-bisphosphate carboxylase/oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiology 112, 43-51 (1996).
Dennison, W. C. & Alberte, R. S. Photoadaptation and growth of Zostera marina L. (eelgrass) transplants along a depth gradient. Journal of Experimental Marine Biology and Ecology 98, 265-282, doi: http://dx.doi.org/10.1016/0022-0981(86)90217-0 (1986).
Hena, M. A., Misri, B., Sidik, B. J., Hishamuddin, O. & Hidir, H. Photosynthetic and respiration responses of Dugong grass Thalassia hemprichii (Ehrenb) Aschers. at Teluk Kemang seagrass bed, Malaysia. Pakistan Journal of Biological Sciences 4, 1487-1489 (2001).
Atkin, O. K., Evans, J. R., Ball, M. C., Lambers, H. & Pons, T. L. Leaf Respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiology 122, 915-924 (2000).
Miller, S. S., Driscoll, B. T., Gregerson, R. G., Gantt, J. S. & Vance, C. P. Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. The Plant Journal 15, 173-184, doi: 10.1046/j.1365-313X.1998.00192.x (1998).
Capaldi, R. A. Structure and function of Cytochrome c Oxidase. Annual Review of Biochemistry 59, 569-596, doi: 10.1146/annurev. bi.59.070190.003033 (1990).
Jänsch, L., Kruft, V., Schmitz, U. K. & Braun, H.-P. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. The Plant Journal 9, 357-368, doi: 10.1046/j.1365-313X.1996.09030357.x (1996).
Maxwell, D. P., Wang, Y. & McIntosh, L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences 96, 8271-8276, doi: 10.1073/pnas.96.14.8271 (1999).
Clifton, R., Millar, A. H. & Whelan, J. Alternative oxidases in: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757, 730-741, doi: http://dx.doi.org/10.1016/j.bbabio.2006.03.009 (2006).
Millar, A. J. Input signals to the plant circadian clock. Journal of Experimental Botany 55, 277-283, doi: 10.1093/jxb/erh034 (2004).
Sorek, M. & Levy, O. Influence of the quantity and quality of light on photosynthetic periodicity in coral endosymbiotic algae. PloS One 7, e43264, doi: 10.1371/journal.pone.0043264 (2012).
Harris, P. C. & Wilkins, M. Light-induced changes in the period of the circadian rhythm of carbon dioxide output in Bryophyllum leaves. Planta 129, 253-258, doi: 10.1007/BF00398267 (1976).
Aschoff, J. Circadian Rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrift für Tierpsychologie 49, 225-249, doi: 10.1111/j.1439-0310.1979.tb00290.x (1979).
Ceusters, J. et al. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. Journal of Experimental Botany 65, 3705-3714, doi: 10.1093/jxb/eru185 (2014).
Gorton, H. L., Williams, W. E. & Assmann, S. M. Circadian rhythms in stomatal responsiveness to red and blue light. Plant Physiology 103, 399-406 (1993).
Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M. & Procaccini, G. Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. Marine Ecology 27, 328-338, doi: 10.1111/j.1439-0485.2006.00133.x (2006).
Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Scientific Reports 6, 28615, doi: 10.1038/srep28615 http://www.nature.com/ articles/srep28615#supplementary-information (2016).
Gobert, S., Laumont, N. & Bouquegneau, J.-M. Posidonia oceanica meadow: A low nutrient high chlorophyll (LNHC) system? BMC Ecology 2, 9 (2002).
Gobert, S. et al. Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI. Marine Pollution Bulletin 58, 1727-1733 (2009).
Richir, J. et al. Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements. Aquatic Toxicology 140-141, 157-173, doi: http://dx.doi.org/10.1016/j.aquatox.2013.05.018 (2013).
Gobert, S., Chéry, A., Volpon, A., Pelaprat, C. & Lejeune, P. In Underwater Seascapes (eds Musard, Olivier et al.) Ch. 18, 277-291 (Springer International Publishing, 2014).
Schubert, N., Colombo-Pallota, M. F. & Enríquez, S. Leaf and canopy scale characterization of the photoprotective response to high-light stress of the seagrass Thalassia testudinum. Limnology and Oceanography 60, 286-302, doi: 10.1002/lno.10024 (2015).
Durako, M. J. & Kunzelman, J. I. Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: methodological and scale-based considerations. Aquatic Botany 73, 173-185, doi: http://dx.doi. org/10.1016/S0304-3770(02)00020-7 (2002).
Kramer, D. M., Johnson, G., Kiirats, O. & Edwards, G. E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis research 79, 209-218, doi: 10.1023/B:PRES.0000015391.99477.0d (2004).
Genty, B., Briantais, J.-M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990, 87-92, doi: http://dx.doi. org/10.1016/S0304-4165(89)80016-9 (1989).
Beer, S. et al. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Marine Ecology Progress Series 174, 293-300 (1998).
Abadía, J. & Abadía, A. In Iron Chelation in Plants and Soil Microorganisms (eds Barton & Hemming) 327-343 (Academic Press, 1993).
Lichtenthaler, H. K. & Buschmann, C. In Current Protocols in Food Analytical Chemistry (John Wiley & Sons, Inc., 2001).
Larbi, A., Abadía, A., Morales, F. & Abadía, J. Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynthesis research 79, 59-69 (2004).
De Las Rivas, J., Abadía, A. & Abadía, J. A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments. Plant physiology 91, 190-192 (1989).
Felisberto, P. et al. Acoustic monitoring of O2 production of a seagrass meadow. Journal of Experimental Marine Biology and Ecology 464, 75-87, doi: http://dx.doi.org/10.1016/j.jembe.2014.12.013 (2015).
Serra, I. A. et al. Reference genes assessment for the seagrass Posidonia oceanica in different salinity, pH and light conditions. Marine Biology 159, 1269-1282, doi: 10.1007/s00227-012-1907-8 (2012).
Spadafora, A. et al. 2-DE polypeptide mapping of Posidonia oceanica leaves, a molecular tool for marine environment studies. Plant Biosystems 142, 213-218 (2008).
Wang, W., Vignani, R., Scali, M. & Cresti, M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27, 2782-2786, doi: 10.1002/elps.200500722 (2006).
Piro, A. et al. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics. Proteomics 15, 4159-4174 (2015).
Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466-469 (1996).
Piro, A. et al. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. Frontiers in Plant Science 6, doi: 10.3389/fpls.2015.00464 (2015).
Ma, B. et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry 17, 2337-2342, doi: 10.1002/rcm.1196 (2003).
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press 2002).
Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and Practices of Statistics in Biological Research (W. H. Freeman; 3rd edition, 1994).
Procaccini, G. & Waycott, M. Brief communication. Microsatellite loci identified in the seagrass Posidonia oceanica (L.) Delile. Journal of Heredity 89, 562-568, doi: 10.1093/jhered/89.6.562 (1998).
Alberto, F. et al. New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. Molecular Ecology Notes 3, 253-255, doi: 10.1046/j.1471-8286.2003.00415.x (2003).
Molecular Ecology Resources Primer Development, C. et al. Permanent genetic resources added to molecular ecology resources database 1 December 2012-31 January 2013. Molecular Ecology Resources 13, 546-549, doi: 10.1111/1755-0998.12095 (2013).
Arnaud-Haond, S. & Belkhir, K. genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes 7, 15-17, doi: 10.1111/j.1471-8286.2006.01522.x (2007).
Peakall, R. O. D. & Smouse, P. E. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288-295, doi: 10.1111/j.1471-8286.2005.01155.x (2006).
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564-567, doi: 10.1111/j.1755-0998.2010.02847.x (2010).
Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www. unil.ch/izea/softwares/fstat.html. (2001).