[en] Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the off-design simulation of ORC-based power systems. To this end, three types of modelling paradigms (namely a constant-efficiency method, a polynomial-based method and a semi-empirical method) are compared both in terms of their fitting and extrapolation capabilities. Post-processed measurements gathered on two experimental ORC facilities are used as reference for the models calibration and evaluation. The study is first applied at a component level (i.e. each component is analysed individually) and then extended to the characterization of the entire organic Rankine cycle power systems. Benefits and limi- tations of each modelling method are discussed. The results show that semi-empirical models are the most reliable for simulating the off-design working conditions of ORC systems, while constant-efficiency and polynomial-based models are both demonstrating lack of accuracy and/or robustness.
Research Center/Unit :
Laboratoire de Thermodynamique, Université de Liège
Disciplines :
Energy
Author, co-author :
Dickes, Rémi ; Université de Liège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Dumont, Olivier ; Université de Liège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Daccord, Rémi; Exoès
Quoilin, Sylvain ; Université de Liège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Lemort, Vincent ; Université de Liège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Language :
English
Title :
Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study
Alternative titles :
[fr] Modélisation de systèmes utilisant un cycle de Rankine organique dans des conditions de fonctionement off-design - une étude comparative validée expérimentalement
Publication date :
15 March 2017
Journal title :
Energy
ISSN :
0360-5442
eISSN :
1873-6785
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
[1] Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G., Low-grade heat conversion into power using organic Rankine cycles - a review of various applications. Renew Sustain Energy Rev 15:8 (2011), 3963–3979, 10.1016/j.rser.2011.07.024 http://www.sciencedirect.com/science/article/pii/S1364032111002644.
[2] Ofeldt FW, ‘Engine’ - US Patent No 611792A (1898). http://www.google.ch/patents/US611792.
[3] Bronicki, L.Y., Short review of the long history of ORC power systems. Keynote lecture of the 2nd International seminar on ORC power systems - ASME-ORC 2013, Rotterdam (NL), 2013.
[4] Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Turunen-Saaresti, T., et al. Organic rankine cycle power systems: from the concept to current technology, applications and an outlook to the future. J Eng Gas Turbines Power 137:October (2015), 1–19, 10.1115/1.4029884 http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4029884.
[5] Gurgenci, H., Performance of power plants with organic Rankine cycles under part-load and off-design conditions. Sol Wind Technol 36:1 (1986), 45–51, 10.1016/0038-092X(86)90059-9 http://www.sciencedirect.com/science/article/pii/0038092X86900599.
[6] Wang, J., Yan, Z., Zhao, P., Dai, Y., Off-design performance analysis of a solar-powered organic Rankine cycle. Energy Convers Manag 80 (2014), 150–157, 10.1016/j.enconman.2014.01.032.
[7] Calise, F., Capuozzo, C., Carotenuto, A., Vanoli, L., Thermoeconomic analysis and off-design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol Energy 103 (2013), 595–609, 10.1016/j.solener.2013.09.031.
[8] Fu, B.R., Hsu, S.W., Lee, Y.R., Hsieh, J.C., Chang, C.M., Liu, C.H., Performance of a 250 kW organic rankine cycle system for off-design heat source conditions. Energies 7:6 (2014), 3684–3694, 10.3390/en7063684.
[9] Hu, D., Zheng, Y., Wu, Y., Li, S., Dai, Y., Off-design performance comparison of an organic Rankine cycle under different control strategies. Appl Energy 156 (2015), 268–279, 10.1016/j.apenergy.2015.07.029 http://www.sciencedirect.com/science/article/pii/S0306261915008582.
[10] Manente, G., Toffolo, A., Lazzaretto, A., Paci, M., An organic Rankine cycle off-design model for the search of the optimal control strategy. Energy 58 (2013), 97–106, 10.1016/j.energy.2012.12.035.
[11] Sun, J., Li, W., Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant. Appl Therm Eng 31:11–12 (2011), 2032–2041, 10.1016/j.applthermaleng.2011.03.012 http://www.sciencedirect.com/science/article/pii/S135943111100144X.
[12] Quoilin, S., Sustainable energy conversion through the use of organic Rankine cycles for waste heat recovery and solar applications. [Ph.D. thesis], 2011, University of Liège.
[13] Wei, D., Lu, X., Lu, Z., Gu, J., Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery. Appl Therm Eng 28:10 (2008), 1216–1224, 10.1016/j.applthermaleng.2007.07.019.
[14] Quoilin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V., Spliethoff, H., Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Appl Energy 88:6 (2011), 2183–2190, 10.1016/j.apenergy.2011.01.015.
[15] Zhang, J., Zhang, W., Hou, G., Fang, F., Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes. Comput Math Appl 64:5 (2012), 908–921, 10.1016/j.camwa.2012.01.054.
[16] Xie, H., Yang, C., Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle. Appl Energy 112 (2013), 130–141, 10.1016/j.apenergy.2013.05.071.
[17] Bamgbopa, M.O., Uzgoren, E., Numerical analysis of an organic Rankine cycle under steady and variable heat input. Appl Energy 107 (2013), 219–228, 10.1016/j.apenergy.2013.02.040.
[18] Mazzi, N., Rech, S., Lazzaretto, A., Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes. Energy 90 (2015), 537–551, 10.1016/j.energy.2015.07.083 http://www.sciencedirect.com/science/article/pii/S0360544215009780.
[19] Hernandez, A., Desideri, A., Ionescu, C., Quoilin, S., Lemort, V., De Keyser, R., Towards the optimal operation of an organic Rankine cycle unit by means of model predictive control. Proceedings of the 3rd international seminar on ORC power systems, 2015, 1–10.
[20] Tona, P., Peralez, J., Control of organic Rankine cycle systems on board heavy-duty vehicles: a survey. IFAC-PapersOnLine 48:15 (2015), 419–426, 10.1016/j.ifacol.2015.10.060 http://linkinghub.elsevier.com/retrieve/pii/S2405896315019369.
[21] Erhart, T., Eicker, U., Infield, D., Part-load characteristics of organic-Rankine-cycles. 2nd European conference on polygeneration, Tarragona (Spain), 2011, 1–11.
[22] Dickes, R., Ziviani, D., de Paepe, M., van den Broek, M., Quoilin, S., Lemort, V., ORCmKit: an open-source library for organic Rankine cycle modelling and analysis. Proceedings of ECOS 2016, Portoroz (Solvenia), 2016.
[23] Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind Eng Chem Res 53:6 (2014), 2498–2508.
[24] Georges, E., Declaye, S., Dumont, O., Quoilin, S., Lemort, V., Design of a small-scale organic Rankine cycle engine used in a solar power plant. Int J Low Carbon Technol 8 (2013), 34–41, 10.1093/ijlct/ctt030.
[25] Dickes, R., Dumont, O., Declaye, S., Quoilin, S., Bell, I., Lemort, V., Experimental investigation of an ORC system for a micro-solar power plant. Proceedings of the 22nd international compressor engineering at Purdue, Purdue (USA), 2014 http://hdl.handle.net/2268/170508.
[26] Rieu, V., Microsol - a 10 kW solar power plant for rural electrification. Presentation at the SolarPACES 2012 conference, Marrakech, 2012.
[27] Quoilin, S., Schrouff, J., Assessing steady-state, multivariate thermo-fluid experimental data using Gaussian Processes: the GPExp open-source library. Energies, 9(6), 2016, 10.3390/en9060423.
[28] Dumont, O., Quoilin, S., Lemort, V., Importance of the reconciliation method to handle experimental data: application to a reversible heat pump/organic Rankine cycle unit integrated in a positive energy building. Int J Energy Environ Eng, 2016, 10.1007/s40095-016-0206-4.
[29] Aslam Bhutta, M.M., Hayat, N., Bashir, M.H., Khan, A.R., Ahmad, K.N., Khan, S., CFD applications in various heat exchangers design: a review. Appl Therm Eng 32:1 (2012), 1–12, 10.1016/j.applthermaleng.2011.09.001.
[30] Dickes, R., Design and fabrication of a variable wall thickness two-stage scroll expander to be integrated in a micro-solar power plant. [Master thesis], 2013, University of Liege http://hdl.handle.net/2268/160458.
[31] Lemort, V., Quoilin, S., Cuevas, C., Lebrun, J., Testing and modeling a scroll expander integrated into an organic Rankine cycle. Appl Therm Eng 29:14–15 (2009), 3094–3102, 10.1016/j.applthermaleng.2009.04.013.
[32] Schmidt, T., Heat transfer calculations for extended surfaces. ASHRAE J, 1949, 351–357.
[33] Ziviani, D., Woodland, B., Georges, E., Groll, E., Braun, J., Horton, W., et al. Development and a validation of a charge sensitive organic Rankine cycle (ORC) simulation tool. Energies, 9(6), 2016, 389, 10.3390/en9060389 http://www.mdpi.com/1996-1073/9/6/389.
[34] Declaye, S., Quoilin, S., Guillaume, L., Lemort, V., Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 55 (2013), 173–183, 10.1016/j.energy.2013.04.003.