Paper published in a book (Scientific congresses and symposiums)
Machine Learning of Real-time Power Systems Reliability Management Response
Duchesne, Laurine; Karangelos, Efthymios; Wehenkel, Louis
2017In PowerTech Manchester 2017 Proceedings
Peer reviewed
 

Files


Full Text
PID4642993.pdf
Author preprint (382.61 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
operation planning under uncertainties; reliability management; machine learning; SCOPF; proxy
Abstract :
[en] In this paper we study how supervised machine learning could be applied to build simplified models of real-time (RT) reliability management response to the realization of uncertainties. The final objective is to import these models into look-ahead operation planning under uncertainties. Our response models predict in particular the real-time reliability management costs and the resulting reliability level of the system. We tested our methodology on the IEEE-RTS96 benchmark. Among the supervised learning algorithms tested, extremely randomized trees, kernel ridge regression and neural networks appear to be the best methods for this application. Furthermore, by using feature “importances” computed by tree-based ensemble methods, we were able to extract the most relevant variables to predict the response of real-time reliability management, and thus obtain a better understanding of the system properties.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Duchesne, Laurine ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Karangelos, Efthymios ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Machine Learning of Real-time Power Systems Reliability Management Response
Publication date :
2017
Event name :
12th IEEE PES PowerTech Conference
Event organizer :
IEEE Power & Energy Society
Event place :
Manchester, United Kingdom
Event date :
from 18-06-2017 to 22-06-2017
Main work title :
PowerTech Manchester 2017 Proceedings
Peer reviewed :
Peer reviewed
European Projects :
FP7 - 608540 - GARPUR - Generally Accepted Reliability Principle with Uncertainty modelling and through probabilistic Risk assessment
Funders :
CE - Commission Européenne
Available on ORBi :
since 16 February 2017

Statistics


Number of views
366 (57 by ULiège)
Number of downloads
1105 (37 by ULiège)

Scopus citations®
 
26
Scopus citations®
without self-citations
22
OpenCitations
 
15
OpenAlex citations
 
29

Bibliography


Similar publications



Contact ORBi