Interactions between groundwater and the cavity of an old slate mine used as lower reservoir of an UPSH (Underground Pumped Storage Hydroelectricity): A modelling approach
[en] In the actual evolving energy context, characterized by an increasing part of intermittent renewable sources, the development of energy storage technologies are required, such as pumped storage hydroelectricity (PSH). While new sites for conventional PSH plants are getting scarce, it is proposed to use abandoned underground mines as lower reservoirs for Underground Pumped Storage Hydroelectricity (UPSH). However, the hydrogeological consequences produced by the cyclic solicitations (continuous pumpings and injections) have been poorly investigated. Therefore, in this work, groundwater interactions with the cyclically fill and empty cavity were numerically studied considering a simplified description of a slate mine. Two pumping/injection scenarios were considered, both for a reference slate rock case and for a sensitivity analysis of variations of aquifer hydraulic conductivity value. Groundwater impacts were assessed in terms of oscillations of piezometric heads and mean drawdown around the cavity. The value of the hydraulic conductivity clearly influences the magnitude of the aquifer response. Studying interactions with the cavity highlighted that seepage into the cavity occurs over time. The volume of seeped water varies depending on the hydraulic conductivity and it could become non-negligible in the UPSH operations. These preliminary results allow finally considering first geological feasibility aspects, which could vary conversely according to the hydraulic conductivity value and to the considered groundwater impacts.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Bodeux, Sarah ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Pujades, Estanislao ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Orban, Philippe ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Brouyère, Serge ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Dassargues, Alain ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Interactions between groundwater and the cavity of an old slate mine used as lower reservoir of an UPSH (Underground Pumped Storage Hydroelectricity): A modelling approach
Publication date :
30 January 2017
Journal title :
Engineering Geology
ISSN :
0013-7952
Publisher :
Elsevier Science, Amsterdam, Netherlands
Volume :
217
Pages :
71-80
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
SMARTWATER
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Public Service of Wallonia - Department of Energy and Sustainable Building University of Liège and the EU through the Marie Curie BelPD-COFUND postdoctoral fellowship (2014–2016; FP7-MSCA-COFUND, 600405)
Adams, R., Younger, P.L., A strategy for modeling ground water rebound in abandoned deep mine systems. Ground Water 39 (2001), 249–261.
Alvarado, R., Niemann, A., Underground pumped-storage hydroelectricity using exisiting coal mining infrastructure. 36th IAHR World Congress, 2015, 1–8 (The Hague, The Netherlands).
Ardizzon, G., Cavazzini, G., Pavesi, G., A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renew. Sust. Energ. Rev. 31 (2014), 746–761, 10.1016/j.rser.2013.12.043.
Bear, J., Cheng, A.H.-D., Modeling Groundwater Flow and Contaminant Transport. 2010, Springer Science + Business Media.
Beck, H.P., Schmidt, M., Windenergiespeicherung durch Nachnutzung stillgelegter Bergwerke. 2011.
Braat, K.B., Van Lohuizne, H.P.S., De Haan, J.F., Underground Pumped Hydro-storage Project for the Netherlands. Tunnels and Tunneling, 17, 1985, 19–22.
Brouyère, S., Etude et Modélisation du Transport et du Piégeage des Solutés en Milieu Souterrain Variablement Saturé. 2001, University of Liège.
Brouyère, S., Carabin, G., Dassargues, A., Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol. J. 12 (2004), 123–134, 10.1007/s10040-003-0293-1.
Brouyère, S., Orban, P., Wildemeersch, S., Couturier, J., Gardin, N., Dassargues, A., The hybrid finite element mixing cell method: a new flexible method for modelling mine ground water problems. Mine Water Environ. 28 (2009), 102–114.
Bussar, C., Stöcker, P., Cai, Z., Moraes, L. Jr., Magnor, D., Wiernes, P., van Bracht, N., Moser, A., Sauer, D.U., Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050 - sensitivity study. J. Energy Storage 6 (2016), 1–10.
Carabin, G., Dassargues, A., Modeling groundwater with ocean and river itneraction. Water Resour. Res. 35 (1999), 2347–2358.
Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y., Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19 (2009), 291–312.
de Haan, W.A., Min, A.P.N., Ondergrondse pomp accumulatie centrale: effectiviteitsverbetering d.m.v. verschillende pomp-turbinevermogens. 1984, TUDelft.
Deane, J.P., Ó Gallachóir, B.P., McKeogh, E.J., Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sust. Energ. Rev. 14 (2010), 1293–1302.
DGO3, Code wallon de bonnes pratiques - Gestion des sols - Guide de référence pour l'étude de risque. 2008.
Fosnacht, D.R., Pumped hydro energy storage (PHES) using abandoned mine pits on the mesabi iron range of minnesota – final report. 2011.
Ghasemizadeh, R., Hellweger, F., Butscher, C., Padilla, I., Vesper, D., Field, M., Alshawabkeh, A., Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 20 (2012), 1441–1461.
IEA, Energy and climate change - World Energy Outlook Special Report. 2015 (doi:10.1038/479267b).
Khan, S.Y., Davidson, I.E., Underground pumped hydroelectric energy storage in South Africa using aquifers and existing infrastructure. NEIS Conference 2016 on Sustainable Energy Supply and Energy Storage Systems, 2016 (Hamburg, Germany).
Luick, H., Niemann, A., Perau, E., Schreiber, U., Coalmines as Underground Pumped Storage Power Plants (UPP) – a contribution to a sustainable energy supply?. Geophys. Res. Abstr., 14, 2012, 4205.
Madlener, R., Specht, J.M., An Exploratory Economic Analysis of Underground Pumped-storage Hydro Power Plants in Abandoned Coal Mines. 2013.
Martin, G.D., Aquifer Underground Pumped Hydroelectric Energy Storage. 2007, University of Wisconsin-Madison.
Meyer, F., Storing Wind Energy Underground. 2013 (Bonn, Germany).
Moriarty, P., Honnery, D., Can renewable energy power the future?. Energy Policy 93 (2016), 3–7, 10.1016/j.enpol.2016.02.051.
Niemann, A., Machbarkeitsstudie zur Nutzung von Anlagen des Steinkohlebergbaus als Pumpspeicherwerke. Pumpspeicherkraftwerke Unter Tage: Chance Für Das Ruhrgebiet, 2011 (Essen, Germany).
Poulain, A., Goderniaux, P., De Dreuzy, J.-R., Study of groundwater-quarry interactions in the context of energy storage systems. European Geosciences Union General Assembly - Geophysical Research Abstracts, 2016, 18 (Vienna, Austria).
Pujades, E., Willems, T., Bodeux, S., Orban, P., Dassargues, A., Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol. J., 2016, 1–16, 10.1007/s10040-016-1413-z.
Rapantová, N., Grmela, A., Vojtek, D., Halir, J., Michalek, B., Groundwater flow modelling applications in mining hydrogeology. Mine Water Environ. 26 (2007), 264–270.
Severson, M.J., Preliminary evaluation of establishing an underground Taconite Mine, to be used later as a lower reservoir in a pumped hydro energy storage facility, on the Mesabi Iron Range, Minnesota. 2011.
Sherwood, B.M., Younger, P.L., Modelling groundwater rebound after coalfield closure: an example from County Durham, UK. 5th International Mine Water Congress, 1994, 769–777 (Nottingham, UK).
Spriet, J., A feasibility study of pumped hydropower energy storage systems in underground cavities. 2013, Bruface (ULB - VUB Faculty of Engineering).
Steffen, B., Prospects for pumped-hydro storage in Germany. Energy Policy 45 (2012), 420–429.
Surinaidu, L., Gurunadha Rao, V.V.S., Srinivasa Rao, N., Srinu, S., Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resour. Ind. 7–8 (2014), 49–65.
Tam, S.W., Blomquiot, C.A., Kartsounes, G.T., Underground Pumped Hydro Storage - An Overview. 1978 (Ardonne, Illinois).
Wildemeersch, S., Brouyère, S., Orban, P., Couturier, J., Dingelstadt, C., Veschkens, M., Dassargues, A., Application of the Hybrid Finite Element Mixing Cell method to an abandoned coalfield in Belgium. J. Hydrol. 392 (2010), 188–200.
Wong, I.H., An underground pumped storage scheme in the Bukit Timah granite of Singapore. Tunn. Undergr. Space Technol. 11 (1996), 485–489.
Yeh, G.T., 3DFEMWATER: a 3-dimensional finite element model of WATER flow through saturated-unsaturated media. 1987, ORNL-6386, Oak Ridge National Laboratory, Oak Ridge, Tenessee.
Yekini Suberu, M., Wazir Mustafa, M., Bashir, N., Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sust. Energ. Rev. 35 (2014), 499–514, 10.1016/j.rser.2014.04.009.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.