[en] Tall fescue, a grass currently grown as forage, presents a good potential as a feedstock in the developmentof biorefining. In this study, combination of steam explosion and an acetic/formic acid “organosolv”pretreatments are applied on raw fescue to optimize lignin extraction yields and obtain specific products.In a first step, fescue is pretreated by steam explosion under severity factors from 1.4 to 4.2. Thesetreatments allow hemicelluloses solubilization and open the lignocellulosic structure. Steam explodedsolid residues are then treated with an acetic acid (50%)/formic acid (30%)/water (20%) mixture. Extractedlignins are precipitated and characterized by size exclusion chromatography (SEC),31P NMR and HSQCNMR. Results show that acetic and formic acids extracted lignins present G, H and S units with ferulate andp-coumarate. Lignin typical linkages identified are of -O-4 and spirodienone substructures. Combinationof steam explosion and acetic and formic acid pretreatments increases extraction yields from 30% to100%. Moreover, an increase of the steam explosion treatment intensity induces chemical modificationsin lignin structure such -O-4 and spirodienone substructure degradations, increase of free COOH andphenolic OH bonds, decrease of aliphatic OH ferulate and p-coumarate bonds and changes in G/H/S unitsproportions. Steam explosion intensity affects also lignin molecular weights.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Maniet, Guillaume ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Schmetz, Quentin ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Jacquet, Nicolas ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Temmerman, Michael; Walloon Agricultural Research Center
Gofflot, Sébastien; Walloon Agricultural Research Center
Richel, Aurore ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Language :
English
Title :
Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., Liquid fuels: hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21 (2013), 506–523.
Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H., Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233 (2011), 1097–1110.
Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manage., 2011, 858–875.
Besnard, A., Marsac, S., Nguyen, E., Ferchaud, F., Savoure, M.-L., La fétuque élevée. 2013 http://www.biomasse-territoire.info/fileadmin/documents/publications/energie_biomasse/RMT_biomasse/culture_fetuque.pdf.
Blakeney, A.B., Harris, P.J., Henry, R.J., Stone, B.A., Simple and rapid preparation of alditol acetates for monosaccharides analysis. Carbohydr. Res. 113 (1983), 291–299.
Bonini, C., D'Auria, M., Di Maggio, P., Ferri, R., Characterization and degradation of lignin from steam explosion of pine and corn stalk of lignin: the role of superoxide ion and ozone. Ind. Crops Prod. 27 (2008), 182–188.
Capanema, E., Balakshin, M., kadla, J., A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J. Agric. Food Chem. 52 (2004), 1850–1860.
Cara, C., Ruiz, E., Ballesteros, I., Negro, M.J., Castro, E., Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem. 41 (2006), 423–429.
Del Rio, J.C., Prinsen, P., Rencoret, J., Nieto, L., Jimenez-Barbero, J., Ralph, J., Martinez, A.T., Gutierrez, A., Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 60 (2012), 3619–3634.
Del Rio, J.C., Rencoret, J., Prinsen, P., Martinez, A.T., Ralph, J., Gutierrez, A., Structural characterization of wheat straw lignin as revealed by analytical pyrolysis 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60 (2012), 5922–5935.
Delmas, G.-H., La biolignine TM: Structure et application à l'élaboration de résines époxy, Mécanique, energétique, génie civil et procédés. 2011, Université de toulouse.
Duque, A., Manzanares, P., Ballesteros, I., Ballesteros, M., Chapter 15. Steam Explosion as Lignocellulosic Biomass Pretreatment, 2016, 349–368, 10.1016/b978-0-12-802323-5.00015-3.
Ehrman, T., Determination of acid-soluble lignin in biomass. Laboratory Analytical Procedure, 1996, National Renewable Energy Laboratory, Golden, CO, USA.
Hongzhang, C., Liying, L., Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour. Technol. 98 (2007), 666–676.
Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M., Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96 (2011), 1582–1588.
Jacquet, N., Vanderghem, C., Danthine, S., Quievy, N., Blecker, C., Devaux, J., Paquot, M., Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresour. Technol. 121 (2012), 221–227.
Jacquet, N., Maniet, G., Vanderghem, C., Delvigne, F., Richel, A., Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind. Eng. Chem. Res. 54 (2015), 2593–2598.
Kataria, R., Mol, A., Schulten, E., Happel, A., Mussatto, S.I., Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Ind. Crop Prod., 2016, 10.1016/j.indcrop.2016.08.050.
Laurichesse, S., Avérous, L., Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39 (2014), 1266–1290.
Li, J., Henriksson, G., Gellerstedt, G., Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98 (2007), 3061–3068.
Li, J., Gellerstedt, G., Toven, K., Steam explosion lignins; their extraction: structure and potential as feedstock for biodiesel and chemicals. Bioresour. Technol. 100 (2009), 2556–2561.
Majcherczyk, A., Hüttermann, A., Size-exclusion chromatography of lignin as ion-pair complex. J. Chromatogr. 764 (1997), 183–191.
Manara, P., Zabaniotou, A., Vanderghem, C., Richel, A., Lignin extraction from mediterranean agro-wastes: impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal. Today, 2014, 25–34.
Martinez, A.T., Rencoret, J., Marques, G., Gutierrez, A., Ibarra, D., Jimenez-Barbero, J., del Rio, J.C., Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study. Phytochemistry 69 (2008), 2831–2843.
Pu, Y., Shilin, C., Ragauskas, A.J., Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 4 (2011), 3154–3166.
Rochez, O., Zorzini, G., Amadou, J., Claes, M., Richel, A., Dispersion of multiwalled carbon nanotubes in water by lignin. J. Mater. Sci. 48 (2013), 4962–4964.
Samuel, R., Foston, M., Jiang, N., Allison, L., Ragauskas, A.J., Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polym. Degrad. Stab. 96 (2011), 2002–2009.
Shimizu, K., Sudo, K., Ono, H., Ishihara, M., Fujii, T., Hishiyama, S., Integrated process for total utilization of wood components by steam-explosion pretreatment. Biomass Bioenergy 14 (1998), 195–203.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Determination of ash in biomass. Laboratory Analytical Procedure, 2005, National Renewable Energy Laboratory, Golden, CO, USA.
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Determination of extractives in biomass. Laboratory Analytical Procedure, 2005, National Renewable Energy Laboratory, Golden, CO, USA.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 2008, National Renewable Energy Laboratory, Golden, CO, USA.
Sun, Y., Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 2002, 1–11.
Thakur, V.K., Thakur, M.K., Recent advances in green hydrogels from lignin: a review. Int. J. Biol. Macromol. 72 (2015), 834–847.
Vanderghem, C., Brostaux, Y., Jacquet, N., Blecker, C., Paquot, M., Optimization of formic/acetic acid delignification of Miscanthus x giganteus for enzymatic hydrolysis using response surface methodology. Ind. Crops Prod. 35 (2012), 280–286.
Villaverde, J.J., Li, J., Ek, M., Ligero, P., de Vega, A., Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 57 (2009), 6262–6270.
Wen, J.-L., Xue, B.-L., Xu, F., Sun, R.-C., Pinkert, A., Unmasking the structural features and property of lignin from bamboo. Ind. Crops Prod. 42 (2013), 332–343.
Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59 (2011), 10604–10614.
Zikeli, F., Ters, T., Fackler, K., Srebotnik, E., Li, J., Fractionation of wheat straw Dioxane lignin reveals molar mass dependent structural differences. Ind. Crops Prod. 91 (2016), 186–193.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.