[en] Construction processes require monitoring to ensure safety and to control the new and existing structures. Traditional monitoring is based on land surveys and geotechnical instruments and only allows for point-like measurements. Ground-based synthetic aperture radar (GB-SAR) is a remote sensing radar installed in the ground that offers the possibility of acquiring measurements in 2D covering areas of up to a few square kilometers in a single acquisition. Because the GB-SAR technology measures phase shifts along the Line-of-Sight, it only allows for measurements in the longitudinal direction. Moreover, this technology requires coherence between subsequent acquisitions. These restrictions can be a limitation to the usage of GB-SAR for monitoring a construction process because in this context, the movements of soil and existing structures occur in any direction and at a very fast pace. This paper aims to test the GB-SAR suitability to measure movements during construction. To do so, an experiment was performed in the future railway station of La Sagrera, Barcelona (Spain), in which GB-SAR was used to accurately quantify wall displacements induced by dewatering and proved to be helpful to understand structural deformations and to identify vulnerable areas. The results were compared to traditional monitoring data and numerical models to confirm the reliability of the GB-SAR measurements.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Serrano-Juan, Alejandro
Vázquez-Suñé, Enric
Montserrat, Oriol
Crosetto, Michele
Hoffmann, Christian
Ledesma, Alberto
Criollo, Rotman
Pujades, Estanislao ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Velasco, Violeta
Garcia-Gil, Alejandro
Alcaraz, Mar
Language :
English
Title :
Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain
Administrador de Infraestructuras Ferroviarias (ADIF) Barcelona Sagrera Alta Velocitat 2015, 2015.
Bernardini G., Ricci P., Coppi F. A ground based microwave interferometer with imaging capabilities for remote measurements of displacements. Proc. GALAHAD Workshop Within the 7th Geomatic Week and the 3rd International Geotelematics Fair (GlobalGeo), Barcelona (Spain), 20-23 February 2007.
Casagli N., Catani F., Del Ventisette C., Luzi G. Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 2010, 7(3):291-301.
Costantini M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36(3):813-821.
Crosetto M., Monserrat O., Luzi G., Cuevas-González M., Devanthéry N. Discontinuous GBSAR deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2014, 93:136-141.
Dunnicliff J. Geotechnical Instrumentation for Monitoring Field Performance 1993, John Wiley & Sons.
Fortuny J., Sieber A.J. Fast algorithm for a near field synthetic aperture radar processor. IEEE Trans. Antennas Propag. 1994, 41:1458-1460.
Ghiglia, D.C., Pritt, M.D., 1998. Two-dimensional phase unwrapping: theory, algorithms, and software. Ed. Wiley, New York (USA).
IDS IBIS Guardian Software v. 02.00 - User Manual 2013, IDS Ingegneria Dei Sistemi S.p.A., Pisa, Italy.
Luzi G., Pieraccini M., Mecatti D., Noferini L., Macaluso G., Tamburini A., Atzeni C. Monitoring of an alpine glacier by means of ground-based SAR interferometry. IEEE Geosci. Remote Sens. Lett. 2007, 4(3):495-499.
Marchamalo M., Galán D., Sánchez J.A., Martínez R. La tecnología DGPS en la construcción: control de movimientos en grandes estructuras. Inf. Constr. 2011, 63(522):93-102. 10.3989/ic.10.008.
Medina A., Carrera J. Geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J. Hydrol. 2003, 281(4):251-264.
Medina A., Alcolea A., Carrera J., Castro L.F. Modelos de flujo y transporte en la geosfera: Código TRANSIN IV. [Flow and transport modelling in the geosphere: the code TRANSIN IV]. IV Jornadas de Investigación y Desarrollo Tecnológico de Gestión de Residuos Redioactivos de ENRESA. Technical publication 9/2000 2000, 195-200.
Monserrat O., Crosetto M., Luzi G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93:40-48.
Pieraccini M., Luzi G., Mecatti D., Fratini M., Noferini L., Carissimi L., Franchioni G., Atzeni C. Remote sensing of building structural displacements using a microwave interferometer with imaging capability. Nondestruct. Test. Eval. 2004, 37(7):545-550.
Pujades E., Carrera J., Vázquez-Suñé E., Jurado A., Vilarrasa V., Mascuñano-Salvador E. Hydraulic characterization of diaphragm walls for cut and cover tunnelling. Eng. Geol. 2012, 125:1-10. 10.1016/j.enggeo.2011.10.012.
Pujades E., Vàzquez-Suñé E., Carrera J., Jurado A. Dewatering of a deep excavation undertaken in a layered soil. Eng. Geol. 2014, 178:15-27. 10.1016/j.enggeo.2014.06.007.
Pujades E., Vázquez-Suñé E., Carrera J., Vilarrasa V., De Simone S., Jurado A., Ledesma A., Ramos G., Lloret A. Deep enclosures versus pumping to reduce settlements during shaft excavations. Eng. Geol. 2014, 169:100-111. 10.1016/j.enggeo.2013.11.017.
Sanz P. El pla de Barcelona: Constitucio i caracteristiques fisiques (Coneguem Catalunya) 1988, Catalan ed.
Schulz W.H., Coe J.A., Shurtleff B.L., Panosky J., Farina P., Ricci P.P., Barsacchi G. Kinematics of the Slumgullion landslide revealed by ground-based InSAR surveys. Proc. Landslides and Engineered Slopes: Protecting Society through Improved Understanding - the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff (Canada), 3-8 June 2012, 1273-1279.
Takahashi K., Matsumoto M., Sato M. Continuous observation of natural-disaster-affected areas using ground-based SAR interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6(3):1286-1294.
Tapete D., Casagli N., Luzi G., Fanti R., Gigli G., Leva D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40(1):176-189.
Tarchi D., Ohlmer E., Sieber A.J. Monitoring of structural changes by radar interferometry. J. Res. Nondestruct. Eval. 1997, 9(4):213-225.
Tarchi D., Rudolf H., Luzi G., Chiarantini L., Coppo P., Sieber A.J. SAR interferometry for structural changes detection: a demonstration test on a dam. Proc. IGARSS 1999, Hamburg, Germany 1999, 1522-1524.
Tarchi D., Casagli N., Fanti R., Leva D., Luzi G., Pasuto A., Pieraccini M., Silvano S. Landslide monitoring by using ground-based SAR interferometry: an example of application. Eng. Geol. 2003, 68(1-2):15-30.
Tarchi D., Antonello G., Casagli N., Farina P., Fortuny-Guasch J., Guerri L., Leva D. On the use of ground-based SAR interferometry for slope failure early warning: the Cortenova rock slide (Italy). Landslides: Risk Analysis and Sustainable Disaster Management 2005, 337-342. Springer, Berlin Heidelberg.
UPC Codigo Visual Transin 1.1 R65. Developed in the Department of Geotechnical Engineering and Geosciences (ETCG) 2003, UPC.
Vázquez-Suñe E., Sánchez-Vila X., Carrera J. Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with referente to Barcelona, Spaint. Hydrogeol. J. 2005, 13:522-533.
Vilarrasa V., Carrera J., Jurado A., Pujades E., Vázquez-Suné E. A methodology for characterizing the hydraulic effectiveness of an annular low-permeability barrier. Eng. Geol. 2011, 120(1):68-80. 10.1016/j.enggeo.2011.04.005.