Boosted Dark Matter; IceCube; Ultra-high energy neutrinos
Abstract :
[en] We study the implications of the premise that any new, relativistic, highly energetic neutral particle that interacts with quarks and gluons would create cascade-like events in the IceCube (IC) detector which would be observationally indistinguishable from neutral current deep-inelastic (DIS) scattering events due to neutrinos. Consequently, one reason for deviations, breaks or excesses in the expected astrophysical power-law neutrino spectrum could be the flux of such a particle. Motivated by features in the recent 1347-day IceCube high energy starting event (HESE) data, we focus on particular boosted dark matter ($\chi$) related realizations of this premise, where $\chi$ is assumed to be much lighter than, and the result of, the slow decay of a massive scalar ($\phi $) which constitutes a major fraction of the Universe's dark matter (DM). We show that this hypothesis, coupled with a standard power-law astrophysical neutrino flux is capable of providing very good fits to the present data, along with a possible explanation of other features in the HESE sample: i.e., a) the paucity of events beyond $\sim 2$ PeV b) a spectral feature resembling a dip in the 400 TeV--1 PeV region and c) an excess in the $50-100$ TeV region. We consider two different boosted DM scenarios, and determine the allowed mass ranges and couplings for four different types of mediators (scalar, pseudoscalar, vector and axial-vector) which could connect the standard and dark sectors, imposing constraints from gamma-ray observations and collider searches. We find that the gamma-ray observations provide the most restrictive constraints, disfavouring the $1\sigma$ allowed parameter space from IC fits, while still being consistent with the $3\sigma$ allowed region. We also test our proposal and its implications against the sample of six year through-going muon track data recently released by IceCube.
Disciplines :
Physics
Author, co-author :
Bhattacharya, Atri ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Gandhi, Raj
Gupta, Aritra
Mukhopadhyay, Satyanarayan
Language :
English
Title :
Boosted Dark Matter and its implications for the features in IceCube HESE data
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, [1510.05223]
IceCube collaboration, M.G. Aartsen et al., 2013 Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 1242856 [1311.5238]
A.C. Vincent, S. Palomares-Ruiz and O. Mena, 2016 Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D 94 023009 [1605.01556]
J.K. Becker, 2008 High-energy neutrinos in the context of multimessenger physics, Phys. Rept. 458 173 [0710.1557]
F. Halzen and D. Hooper, 2002 High-energy neutrino astronomy: The Cosmic ray connection, Rept. Prog. Phys. 65 1025 [astro-ph/0204527]
G. Sigl, 2012 High Energy Neutrinos and Cosmic Rays, Proc. Int. Sch. Phys. Fermi 182 145 [1202.0466]
M.D. Kistler, T. Stanev and H. Yüksel, 2014 Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons, Phys. Rev. D 90 123006 [1301.1703]
R. Laha, J.F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, 2013 Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events), Phys. Rev. D 88 043009 [1306.2309]
L.A. Anchordoqui, H. Goldberg, M.H. Lynch, A.V. Olinto, T.C. Paul and T.J. Weiler, 2014 Pinning down the cosmic ray source mechanism with new IceCube data, Phys. Rev. D 89 083003 [1306.5021]
L.A. Anchordoqui et al., 2014 Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics and Particle Physics, JHEAp 1-2 1 [1312.6587]
K. Murase, 2015 On the Origin of High-Energy Cosmic Neutrinos, AIP Conf. Proc. 1666 040006 [1410.3680]
W. Winter, 2014 Describing the Observed Cosmic Neutrinos by Interactions of Nuclei with Matter, Phys. Rev. D 90 103003 [1407.7536]
S. Dado and A. Dar, 2014 Origin of the High Energy Cosmic Neutrino Background, Phys. Rev. Lett. 113 191102 [1405.5487]
I. Cholis and D. Hooper, 2013 On The Origin of IceCube's PeV Neutrinos J. Cosmol. Astropart. Phys. 2013 06 030 [1211.1974]
R.-Y. Liu and X.-Y. Wang, 2013 Diffuse PeV neutrinos from gamma-ray bursts, Astrophys. J. 766 73 [1212.1260]
S. Razzaque, 2013 Long-lived PeV-EeV neutrinos from gamma-ray burst blastwave, Phys. Rev. D 88 103003 [1307.7596]
K. Murase and K. Ioka, 2013 TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars, Phys. Rev. Lett. 111 121102 [1306.2274]
N. Fraija, 2014 GeV-PeV neutrino production and oscillation in hidden jets from gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 437 2187 [1310.7061]
M. Petropoulou, D. Giannios and S. Dimitrakoudis, 2014 Implications of a PeV neutrino spectral cutoff in GRB models, Mon. Not. Roy. Astron. Soc. 445 570 [1405.2091]
S. Razzaque and L. Yang, 2015 PeV-EeV neutrinos from GRB blast waves in IceCube and future neutrino telescopes, Phys. Rev. D 91 043003 [1411.7491]
I. Tamborra and S. Ando, 2015 Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs J. Cosmol. Astropart. Phys. 2015 09 036 [1504.00107]
N. Senno, K. Murase and P. Meszaros, 2016 Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources, Phys. Rev. D 93 083003 [1512.08513]
I. Tamborra and S. Ando, 2016 Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos, Phys. Rev. D 93 053010 [1512.01559]
K. Murase, M. Ahlers and B.C. Lacki, 2013 Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube, Phys. Rev. D 88 121301 [1306.3417]
L.A. Anchordoqui, T.C. Paul, L.H.M. da Silva, D.F. Torres and B.J. Vlcek, 2014 What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Phys. Rev. D 89 127304 [1405.7648]
I. Tamborra, S. Ando and K. Murase, 2014 Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections and implications for starburst history J. Cosmol. Astropart. Phys. 2014 09 043 [1404.1189]
X.-C. Chang and X.-Y. Wang, 2014 The diffuse gamma-ray flux associated with sub-PeV/PeV neutrinos from starburst galaxies, Astrophys. J. 793 131 [1406.1099]
I. Bartos and S. Marka, Spectral Decline of PeV Neutrinos from Starburst Galaxies, [1509.00983]
O.E. Kalashev, A. Kusenko and W. Essey, 2013 PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei, Phys. Rev. Lett. 111 041103 [1303.0300]
F.W. Stecker, 2013 PeV neutrinos observed by IceCube from cores of active galactic nuclei, Phys. Rev. D 88 047301 [1305.7404]
C.D. Dermer, K. Murase and Y. Inoue, 2014 Photopion Production in Black-Hole Jets and Flat-Spectrum Radio Quasars as PeV Neutrino Sources, JHEAp 3-4 29 [1406.2633]
F. Kraußet al., 2014 TANAMI Blazars in the IceCube PeV Neutrino Fields, Astron. Astrophys. 566 L7 [1406.0645]
F. Tavecchio, G. Ghisellini and D. Guetta, 2014 Structured jets in BL Lac objects: efficient PeV neutrino factories?, Astrophys. J. 793 L18 [1407.0907]
S. Sahu and L.S. Miranda, 2015 Some possible sources of IceCube TeV-PeV neutrino events, Eur. Phys. J. C 75 273 [1408.3664]
O. Kalashev, D. Semikoz and I. Tkachev, 2015 Neutrinos in IceCube from active galactic nuclei, J. Exp. Theor. Phys. 120 541 [1410.8124]
F. Tavecchio and G. Ghisellini, 2015 High-energy cosmic neutrinos from spine-sheath BL Lac jets, Mon. Not. Roy. Astron. Soc. 451 1502 [1411.2783]
S.S. Kimura, K. Murase and K. Toma, 2015 Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-Luminosity Active Galactic Nuclei, Astrophys. J. 806 159 [1411.3588]
M. Petropoulou, S. Dimitrakoudis, P. Padovani, A. Mastichiadis and E. Resconi, 2015 Photohadronic origin of γ -ray BL Lac emission: implications for IceCube neutrinos, Mon. Not. Roy. Astron. Soc. 448 2412 [1501.07115]
R.-Y. Liu, X.-Y. Wang, S. Inoue, R. Crocker and F. Aharonian, 2014 Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies, Phys. Rev. D 89 083004 [1310.1263]
S. Chakraborty and I. Izaguirre, 2015 Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux, Phys. Lett. B 745 35 [1501.02615]
A. Bhattacharya, R. Enberg, M.H. Reno and I. Sarcevic, 2015 Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events J. Cosmol. Astropart. Phys. 2015 06 034 [1407.2985]
L.A. Anchordoqui, H. Goldberg, T.C. Paul, L.H.M. da Silva and B.J. Vlcek, 2014 Estimating the contribution of Galactic sources to the diffuse neutrino flux, Phys. Rev. D 90 123010 [1410.0348]
H. Gao, B. Zhang, X.-F. Wu and Z.-G. Dai, 2013 Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers, Phys. Rev. D 88 043010 [1306.3006]
X.-Y. Wang and R.-Y. Liu, 2016 Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos, Phys. Rev. D 93 083005 [1512.08596]
A. Neronov, D.V. Semikoz and C. Tchernin, 2014 PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy, Phys. Rev. D 89 103002 [1307.2158]
J.C. Joshi, W. Winter and N. Gupta, 2014 How Many of the Observed Neutrino Events Can Be Described by Cosmic Ray Interactions in the Milky Way?, Mon. Not. Roy. Astron. Soc. 439 3414 [1310.5123]
B. Katz, E. Waxman, T. Thompson and A. Loeb, The energy production rate density of cosmic rays in the local universe is ∼10^44-45 erg Mpc-3 yr-1 at all particle energies, [1311.0287]
K. Fang, T. Fujii, T. Linden and A.V. Olinto, 2014 Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Astrophys. J. 794 126 [1404.6237]
M. Kachelrießand S. Ostapchenko, 2014 Neutrino yield from Galactic cosmic rays, Phys. Rev. D 90 083002 [1405.3797]
L.A. Anchordoqui, 2015 Neutron β-decay as the origin of IceCube's PeV (anti)neutrinos, Phys. Rev. D 91 027301 [1411.6457]
Y.-Q. Guo, H.-B. Hu and Z. Tian, 2016 On the contribution of a hard galactic plane component to the excesses of secondary particles, Chin. Phys. C 40 115001 [1412.8590]
A.M. Taylor, S. Gabici and F. Aharonian, 2014 Galactic halo origin of the neutrinos detected by IceCube, Phys. Rev. D 89 103003 [1403.3206]
F. Zandanel, I. Tamborra, S. Gabici and S. Ando, 2015 High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints, Astron. Astrophys. 578 A32 [1410.8697]
B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, 2013 Neutrinos at IceCube from Heavy Decaying Dark Matter, Phys. Rev. D 88 015004 [1303.7320]
A. Esmaili and P.D. Serpico, 2013 Are IceCube neutrinos unveiling PeV-scale decaying dark matter? J. Cosmol. Astropart. Phys. 2013 11 054 [1308.1105]
Y. Ema, R. Jinno and T. Moroi, 2014 Cosmic-Ray Neutrinos from the Decay of Long-Lived Particle and the Recent IceCube Result, Phys. Lett. B 733 120 [1312.3501]
A. Esmaili, S.K. Kang and P.D. Serpico, 2014 IceCube events and decaying dark matter: hints and constraints J. Cosmol. Astropart. Phys. 2014 12 054 [1410.5979]
A. Bhattacharya, M.H. Reno and I. Sarcevic, 2014 Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube J. High Energy Phys. JHEP06(2014)110 [1403.1862]
A. Bhattacharya, R. Gandhi and A. Gupta, 2015 The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube J. Cosmol. Astropart. Phys. 2015 03 027 [1407.3280]
Y. Ema, R. Jinno and T. Moroi, 2014 Cosmological Implications of High-Energy Neutrino Emission from the Decay of Long-Lived Particle J. High Energy Phys. JHEP10(2014)150 [1408.1745]
J.F. Cherry, A. Friedland and I.M. Shoemaker, Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube, [1411.1071]
J. Kopp, J. Liu and X.-P. Wang, 2015 Boosted Dark Matter in IceCube and at the Galactic Center J. High Energy Phys. JHEP04(2015)105 [1503.02669]
K. Murase, R. Laha, S. Ando and M. Ahlers, 2015 Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube, Phys. Rev. Lett. 115 071301 [1503.04663]
A. Esmaili and P.D. Serpico, 2015 Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints J. Cosmol. Astropart. Phys. 2015 10 014 [1505.06486]
L.A. Anchordoqui, V. Barger, H. Goldberg, X. Huang, D. Marfatia, L.H.M. da Silva et al., 2015 IceCube neutrinos, decaying dark matter and the Hubble constant, Phys. Rev. D 92 061301 [1506.08788]
S.M. Boucenna, M. Chianese, G. Mangano, G. Miele, S. Morisi, O. Pisanti et al., 2015 Decaying Leptophilic Dark Matter at IceCube J. Cosmol. Astropart. Phys. 2015 12 055 [1507.01000]
P. Ko and Y. Tang, 2015 IceCube Events from Heavy DM decays through the Right-handed Neutrino Portal, Phys. Lett. B 751 81 [1508.02500]
M. Chianese, G. Miele, S. Morisi and E. Vitagliano, 2016 Low energy IceCube data and a possible Dark Matter related excess, Phys. Lett. B 757 251 [1601.02934]
P.S.B. Dev, D. Kazanas, R.N. Mohapatra, V.L. Teplitz and Y. Zhang, 2016 Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube J. Cosmol. Astropart. Phys. 2016 08 034 [1606.04517]
M. Chianese and A. Merle, 2017 A Consistent Theory of Decaying Dark Matter Connecting IceCube to the Sesame Street J. Cosmol. Astropart. Phys. 2017 04 017 [1607.05283]
V. Barger and W.-Y. Keung, 2013 Superheavy Particle Origin of IceCube PeV Neutrino Events, Phys. Lett. B 727 190 [1305.6907]
A.N. Akay, U. Kaya and S. Sultansoy, Color octet neutrino as the source of the IceCube PeV energy neutrino events, [1402.1681]
I. Alikhanov, 2015 The Glashow resonance in neutrino-photon scattering, Phys. Lett. B 741 295 [1402.6678]
L.A. Anchordoqui, V. Barger, H. Goldberg, J.G. Learned, D. Marfatia, S. Pakvasa et al., 2014 End of the cosmic neutrino energy spectrum, Phys. Lett. B 739 99 [1404.0622]
K. Ioka and K. Murase, 2014 IceCube PeV-EeV neutrinos and secret interactions of neutrinos, PTEP 2014 061E01 [1404.2279]
K.C.Y. Ng and J.F. Beacom, 2014 Cosmic neutrino cascades from secret neutrino interactions, Phys. Rev. D 90 065035 [1404.2288]
J. Zavala, 2014 Galactic PeV neutrinos from dark matter annihilation, Phys. Rev. D 89 123516 [1404.2932]
F.W. Stecker and S.T. Scully, 2014 Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation, Phys. Rev. D 90 043012 [1404.7025]
M. Ibe and K. Kaneta, 2014 Cosmic neutrino background absorption line in the neutrino spectrum at IceCube, Phys. Rev. D 90 053011 [1407.2848]
T. Araki, F. Kaneko, Y. Konishi, T. Ota, J. Sato and T. Shimomura, 2015 Cosmic neutrino spectrum and the muon anomalous magnetic moment in the gauged Lμ -Lτ model, Phys. Rev. D 91 037301 [1409.4180]
A.N. Akay, O. Cakir, Y.O. Günaydin, U. Kaya, M. Sahin and S. Sultansoy, 2015 New IceCube data and color octet neutrino interpretation of the PeV energy events, Int. J. Mod. Phys. A 30 1550163 [1409.5896]
E. Aeikens, H. Päs, S. Pakvasa and P. Sicking, 2015 Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions J. Cosmol. Astropart. Phys. 2015 10 005 [1410.0408]
J.I. Illana, M. Masip and D. Meloni, 2015 A new physics interpretation of the IceCube data, Astropart. Phys. 65 64 [1410.3208]
C.S. Fong, H. Minakata, B. Panes and R. Zukanovich Funchal, 2015 Possible Interpretations of IceCube High-Energy Neutrino Events J. High Energy Phys. JHEP02(2015)189 [1411.5318]
F.W. Stecker, S.T. Scully, S. Liberati and D. Mattingly, 2015 Searching for Traces of Planck-Scale Physics with High Energy Neutrinos, Phys. Rev. D 91 045009 [1411.5889]
A. DiFranzo and D. Hooper, 2015 Searching for MeV-Scale Gauge Bosons with IceCube, Phys. Rev. D 92 095007 [1507.03015]
G. Tomar, S. Mohanty and S. Pakvasa, 2015 Lorentz Invariance Violation and IceCube Neutrino Events J. High Energy Phys. JHEP11(2015)022 [1507.03193]
P. Di Bari, P.O. Ludl and S. Palomares-Ruiz, 2016 Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal J. Cosmol. Astropart. Phys. 2016 11 044 [1606.06238]
U.K. Dey, S. Mohanty and G. Tomar, Leptoquarks: 750 GeV Diphoton Resonance and IceCube Events, [1606.07903]
P.S.B. Dev, D.K. Ghosh and W. Rodejohann, 2016 R-parity Violating Supersymmetry at IceCube, Phys. Lett. B 762 116 [1605.09743]
E. Fermi, 1949 On the Origin of the Cosmic Radiation, Phys. Rev. 75 1169
T. Kashti and E. Waxman, 2005 Flavoring astrophysical neutrinos: Flavor ratios depend on energy, Phys. Rev. Lett. 95 181101 [astro-ph/0507599]
J.G. Learned and S. Pakvasa, 1995 Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys. 3 267 [hep-ph/9405296]
A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, 2011 The Glashow resonance at IceCube: signatures, event rates and pp vs. pγ interactions J. Cosmol. Astropart. Phys. 2011 10 017 [1108.3163]
V.S. Berezinsky and A.Z. Gazizov, 1981 Neutrino-electron scattering at energies above the W boson production threshold Sov J. Nucl. Phys. 33 120
R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, 1996 Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 81 [hep-ph/9512364]
H. Athar, C.S. Kim and J. Lee, 2006 The Intrinsic and oscillated astrophysical neutrino flavor ratios, Mod. Phys. Lett. A 21 1049 [hep-ph/0505017]
J.F. Beacom and J. Candia, 2004 Shower power: Isolating the prompt atmospheric neutrino flux using electron neutrinos J. Cosmol. Astropart. Phys. 2004 11 009 [hep-ph/0409046]
V. Barger, L. Fu, J.G. Learned, D. Marfatia, S. Pakvasa and T.J. Weiler, 2014 Glashow resonance as a window into cosmic neutrino sources, Phys. Rev. D 90 121301 [1407.3255]
F. Halzen, Particle physics beyond laboratory energies, in proceedings of the Phenomenology 2016 Symposium, University of Pittsburgh, Pittsburgh, USA, May 9-11, 2016
S. Razzaque, 2013 The Galactic Center Origin of a Subset of IceCube Neutrino Events, Phys. Rev. D 88 081302 [1309.2756]
M. Ahlers and K. Murase, 2014 Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Phys. Rev. D 90 023010 [1309.4077]
Y. Bai, R. Lu and J. Salvado, 2016 Geometric Compatibility of IceCube TeV-PeV Neutrino Excess and its Galactic Dark Matter Origin J. High Energy Phys. JHEP01(2016)161 [1311.5864]
C. Lunardini, S. Razzaque, K.T. Theodoseau and L. Yang, 2014 Neutrino Events at IceCube and the Fermi Bubbles, Phys. Rev. D 90 023016 [1311.7188]
P. Padovani and E. Resconi, 2014 Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?, Mon. Not. Roy. Astron. Soc. 443 474 [1406.0376]
M. Ahlers and F. Halzen, 2014 Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations, Phys. Rev. D 90 043005 [1406.2160]
Y. Bai, A.J. Barger, V. Barger, R. Lu, A.D. Peterson and J. Salvado, 2014 Neutrino Lighthouse at Sagittarius A∗, Phys. Rev. D 90 063012 [1407.2243]
R. Moharana and S. Razzaque, 2015 Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources J. Cosmol. Astropart. Phys. 2015 08 014 [1501.05158]
K. Emig, C. Lunardini and R. Windhorst, 2015 Do high energy astrophysical neutrinos trace star formation? J. Cosmol. Astropart. Phys. 2015 12 029 [1507.05711]
IceCube, VERITAS collaborations, M. Santander, Searching for TeV gamma-ray emission associated with IceCube high-energy neutrinos using VERITAS, PoS(ICRC2015)785 [1509.00517]
A. Neronov and D.V. Semikoz, 2016 Evidence the Galactic contribution to the IceCube astrophysical neutrino flux, Astropart. Phys. 75 60 [1509.03522]
L.S. Miranda, A.R. de León and S. Sahu, 2016 Blazar origin of some IceCube events, Eur. Phys. J. C 76 402 [1510.00048]
IceCube, Pierre Auger, Telescope Array collaboration, M.G. Aartsen et al., 2016 Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array J. Cosmol. Astropart. Phys. 2016 01 037 [1511.09408]
A. Neronov and D. Semikoz, 2016 Galactic and extragalactic contributions to the astrophysical muon neutrino signal, Phys. Rev. D 93 123002 [1603.06733]
L.A. Anchordoqui, M.M. Block, L. Durand, P. Ha, J.F. Soriano and T.J. Weiler, Evidence for a break in the spectrum of astrophysical neutrinos, [1611.07905]
IceCube collaboration, M.G. Aartsen et al., 2015 Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube, Phys. Rev. D 91 022001 [1410.1749]
M. Chianese, G. Miele and S. Morisi, 2017 Dark Matter interpretation of low energy IceCube MESE excess J. Cosmol. Astropart. Phys. 2017 01 007 [1610.04612]
E. Waxman and J.N. Bahcall, 1999 High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 023002 [hep-ph/9807282]
J.N. Bahcall and E. Waxman, 2001 High-energy astrophysical neutrinos: The Upper bound is robust, Phys. Rev. D 64 023002 [hep-ph/9902383]
S.M. Boucenna, M. Chianese, G. Mangano, G. Miele, S. Morisi, O. Pisanti et al., 2015 Decaying Leptophilic Dark Matter at IceCube J. Cosmol. Astropart. Phys. 2015 12 055 [1507.01000]
K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, 2014 Dark Matter Production in Late Time Reheating, Phys. Rev. D 89 083532 [1402.2846]
Y. Kurata and N. Maekawa, 2012 Averaged Number of the Lightest Supersymmetric Particles in Decay of Superheavy Particle with Long Lifetime, Prog. Theor. Phys. 127 657 [1201.3696]
R. Allahverdi and M. Drees, 2002 Production of massive stable particles in inflaton decay, Phys. Rev. Lett. 89 091302 [hep-ph/0203118]
R. Allahverdi and M. Drees, 2002 Thermalization after inflation and production of massive stable particles, Phys. Rev. D 66 063513 [hep-ph/0205246]
K. Griest and M. Kamionkowski, 1990 Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 615
K. Agashe, Y. Cui, L. Necib and J. Thaler, 2014 (In)direct Detection of Boosted Dark Matter J. Cosmol. Astropart. Phys. 2014 10 062 [1405.7370]
J. Berger, Y. Cui and Y. Zhao, 2015 Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors J. Cosmol. Astropart. Phys. 2015 02 005 [1410.2246]
K. Kong, G. Mohlabeng and J.-C. Park, 2015 Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743 256 [1411.6632]
H. Alhazmi, K. Kong, G. Mohlabeng and J.-C. Park, Boosted Dark Matter at the Deep Underground Neutrino Experiment, [1611.09866]
IceCube collaboration, M.G. Aartsen et al., 2016 Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data, Astrophys. J. 833 3 [1607.08006]
Fermi-LAT collaboration, M. Ajello et al., 2016 Fermi-LAT Observations of High-Energy γ-Ray Emission Toward the Galactic Center, Astrophys. J. 819 44 [1511.02938]
Fermi-LAT collaboration, M. Ackermann et al., 2015 The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J. 799 86 [1410.3696]
KASCADE-Grande collaboration, Z. Feng, D. Kang and A. Haungs, Limits on the isotropic diffuse γ-rays at ultra high energies measured with KASCADE, PoS(ICRC2015)823
AGRAPES-3 collaboration, S.K. Gupta et al., 2009 The current status of the GRAPES-3 extensive air shower experiment, Nucl. Phys. Proc. Suppl. 196 153
M. Ahlers and K. Murase, 2014 Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Phys. Rev. D 90 023010 [1309.4077]
T. Cohen, K. Murase, N.L. Rodd, B.R. Safdi and Y. Soreq, Gamma-ray Constraints on Decaying Dark Matter and Implications for IceCube, [1612.05638]
E. Izaguirre, G. Krnjaic and B. Shuve, 2014 The Galactic Center Excess from the Bottom Up, Phys. Rev. D 90 055002 [1404.2018]
G. D'Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, 2002 Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 155 [hep-ph/0207036]
F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, 2016 Implications of unitarity and gauge invariance for simplified dark matter models J. High Energy Phys. JHEP02(2016)016 [1510.02110]
Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 A13 [1502.01589]
M.R. Buckley, D. Feld and D. Goncalves, 2015 Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 015017 [1410.6497]
M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, 2015 Constraining Dark Sectors with Monojets and Dijets J. High Energy Phys. JHEP07(2015)089 [1503.05916]
ATLAS collaboration, 2016 Search for New Phenomena in Dijet Events with the ATLAS Detector at s1/2=13 TeV with 2015 and 2016 data, http://cds.cern.ch/record/2206212ATLAS-CONF-2016-069
M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci et al., 2011 PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection J. Cosmol. Astropart. Phys. 2011 03 051 [Erratum ibid 1210 (2012) E01] [1012.4515]
M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, 2012 Gamma ray constraints on Decaying Dark Matter, Phys. Rev. D 86 083506 [1205.5283]
J.F. Navarro, C.S. Frenk and S.D.M. White, 1996 The Structure of cold dark matter halos, Astrophys. J. 462 563 [astro-ph/9508025]
M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci et al., 2011 PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection J. Cosmol. Astropart. Phys. 2011 03 051 [Erratum ibid 1210 (2012) E01] [1012.4515]
A. Belyaev, N.D. Christensen and A. Pukhov, 2013 CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 1729 [1207.6082]
Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 A16 [1303.5076]
O. Mena, S. Palomares-Ruiz and A.C. Vincent, 2014 Flavor Composition of the High-Energy Neutrino Events in IceCube, Phys. Rev. Lett. 113 091103 [1404.0017]
A. Esmaili, A. Ibarra and O.L.G. Peres, 2012 Probing the stability of superheavy dark matter particles with high-energy neutrinos J. Cosmol. Astropart. Phys. 2012 11 034 [1205.5281]
T. Sjöstrand, S. Mrenna and P.Z. Skands, 2008 A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 852 [0710.3820]
H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin et al., 2010 New parton distributions for collider physics, Phys. Rev. D 82 074024 [1007.2241]
R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, 1998 Neutrino interactions at ultrahigh-energies, Phys. Rev. D 58 093009 [hep-ph/9807264]
A. Cooper-Sarkar, P. Mertsch and S. Sarkar, 2011 The high energy neutrino cross-section in the Standard Model and its uncertainty J. High Energy Phys. JHEP08(2011)042 [1106.3723]
M.D. Kistler and R. Laha, Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance, [1605.08781]
IceCube collaboration, A. Ishihara, 2016 Extremely high energy neutrinos in six years of IceCube data, J. Phys. Conf. Ser. 718 062027
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.