[en] Loudness dependence of auditory evoked potentials (LDAEP) evaluates loudness processing in the human auditory system and is often altered in patients with psychiatric disorders. Previous research has suggested that this measure may be used as an indicator of the central serotonergic system through the highly serotonergic innervation of the auditory cortex. However, differences among the commonly used analysis approaches (such as source analysis and single electrode estimation) may lead to different results. Putatively due to discrepancies of the underlying structures being measured. Therefore, it is important to learn more about how and where in the brain loudness variation is processed. We conducted a detailed investigation of the LDAEP generators and their temporal dynamics by means of multichannel magnetoencephalography (MEG). Evoked responses to brief tones of five different intensities were recorded from 19 healthy participants. We used magnetic field tomography in order to appropriately localize superficial as well as deep source generators of which we conducted a time series analysis. The results showed that apart from the auditory cortex other cortical sources exhibited activation during the N1/P2 time window. Analysis of time courses in the regions of interest revealed a sequential cortical activation from primary sensory areas, particularly the auditory and somatosensory cortex to posterior cingulate cortex (PCC) and to premotor cortex (PMC). The additional activation within the PCC and PMC has implications on the analysis approaches used in LDAEP research.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alcaini M., Giard M., Thevenet M., Pernier J. Two separate frontal components in the N1 wave of the human auditory evoked response. Psychophysiology 1994, 31:611-615.
Arezzo J., Pickoff A., Vaughan H.G. The sources and intracerebral distribution of auditory evoked potentials in the alert rhesus monkey. Brain Res. 1975, 90:57-73.
Attal Y., Maess B., Friederici A., David O. Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Rev. Neurosci. 2012, 23:85-95.
Azmitia E.C., Gannon P.J. The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv. Neurol. 1986, 43:407-468.
Baribeau J.C., Laurent J.P. The effect of selective attention on augmenting/intensity function of the early negative waves of AEPs. Electroencephalogr. Clin. Neurophysiol. Suppl. 1987, 40:68-75.
Brechmann A., Baumgart F., Scheich H. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J. Neurophysiol. 2002, 87:423-433.
Bruneau N., Roux S., Garreau B., Lelord G. Frontal auditory evoked potentials and augmenting-reducing. Electroencephalogr. Clin. Neurophysiol. 1985, 62:364-371.
Buchsbaum M. Individual differences in stimulus intensity response. Psychophysiology 1971, 8:600-611.
Chen Y.-H., Dammers J., Boers F., Leiberg S., Edgar J.C., Roberts T., Mathiak K. The temporal dynamics of insula activity to disgust and happy facial expressions: a magnetoencephalography study. Neuroimage 2009, 47:1921.
Coch D., Skendzel W., Neville H.J. Auditory and visual refractory period effects in children and adults: an ERP study. Clin. Neurophysiol. 2005, 116:2184-2203.
Dammers J., Ioannides A.A. Neuromagnetic localization of CMV generators using incomplete and full-head biomagnetometer. Neuroimage 2000, 11:167-178.
Dammers J., Mohlberg H., Boers F., Tass P., Amunts K., Mathiak K. A new toolbox for combining magnetoencephalographic source analysis and cytoarchitectonic probabilistic data for anatomical classification of dynamic brain activity. Neuroimage 2007, 34:1577-1587.
Dammers J., Schiek M., Boers F., Silex C., Zvyagintsev M., Pietrzyk U., Mathiak K. Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans. Biomed. Eng. 2008, 55:2353-2362.
De Pascalis V., Cozzuto G., Russo E. Effects of personality trait emotionality on acoustic startle response and prepulse inhibition including N100 and P200 event-related potential. Clin. Neurophysiol. 2012, 124:292-305.
Debener S., Strobel A., Kurschner K., Kranczioch C., Hebenstreit J., Maercker A., Beauducel A., Brocke B. Is auditory evoked potential augmenting/reducing affected by acute tryptophan depletion?. Biol. Psychiatry 2002, 59:121-133.
Eickhoff S.B., Heim S., Zilles K., Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 2006, 32:570-582.
Elberling C., Bak C., Kofoed B., Lebech J., Saermark K. Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole. Acta Neurol. Scand. 1982, 65:553-569.
Fink M., Wadsak W., Savli M., Stein P., Moser U., Hahn A., Mien L.-K., Kletter K., Mitterhauser M., Kasper S., Lanzenberger R. Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. Neuroimage 2009, 45:598-605.
Gallinat J., Senkowski D., Wernicke C., Juckel G., Becker I., Sander T., Smolka M., Hegerl U., Rommelspacher H., Winterer G. Allelic variants of the functional promoter polymorphism of the human serotonin transporter gene is associated with auditory cortical stimulus processing. Neuropsychopharmacology 2003, 28:530-532.
Giard M.H., Perrin F., Echallier J.F., Thevenet M., Froment J.C., Pernier J. Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr. Clin. Neurophysiol. 1994, 92:238-252.
Godey B., Schwartz D., De Graaf J., Chauvel P., Liegeois-Chauvel C. Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients. Clin. Neurophysiol. 2001, 112:1850-1859.
Hagenmuller F., Hitz K., Darvas F., Kawohl W. Determination of the loudness dependence of auditory evoked potentials: single-electrode estimation versus dipole source analysis. Hum. Psychopharmacol. Clin. 2011, 26:147-154.
Hahn A., Wadsak W., Windischberger C., Baldinger P., Höflich A.S., Losak J., Nics L., Philippe C., Kranz G.S., Kraus C. Differential modulation of the default mode network via serotonin-1A receptors. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:2619-2624.
Hall D.A., Haggard M.P., Summerfield A.Q., Akeroyd M.A., Palmer A.R., Bowtell R.W. Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J. Acoust. Soc. Am. 2001, 109:1559-1570.
Hari R., Kaila K., Katila T., Tuomisto T., Varpula T. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr. Clin. Neurophysiol. 1982, 54:561-569.
Hart H.C., Palmer A.R., Hall D.A. Heschl's gyrus is more sensitive to tone level than non-primary auditory cortex. Hear. Res. 2002, 171:177-190.
Hegerl U., Juckel G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol. Psychiatry 1993, 33:173-187.
Hegerl U., Gallinat J., Mrowinski D. Intensity dependence of auditory evoked dipole source activity. Int. J. Psychophysiol. 1994, 17:1-13.
Hitz K., Heekeren K., Obermann C., Huber T., Juckel G., Kawohl W. Examination of the effect of acute levodopa administration on the loudness dependence of auditory evoked potentials (LDAEP) in humans. Psychopharmacology (Berlin) 2011, 1-8.
Huang M., Edgar J., Thoma R., Hanlon F., Moses S., Lee R., Paulson K., Weisend M., Irwin J., Bustillo J. Predicting EEG responses using MEG sources in superior temporal gyrus reveals source asynchrony in patients with schizophrenia. Clin. Neurophysiol. 2003, 114:835-850.
Ioannides A.A. Estimates of 3D Brain Activity ms by ms From Biomagnetic Signals: Method (MFT), Results and Their Significance. Quantitative and topological EEG and MEG analysis 1995, 59-68. Universitaetsverlag Druchhaus-Maayer GmbH, Jena, Germany. E. Eiselt, U. Zwiener, H. Witte (Eds.).
Ioannides A.A. Magnetoencephalography as a research tool in neuroscience: state of the art. Neuroscientist 2006, 12:524-544.
Ioannides A.A., Bolton J., Clarke C. Continuous probabilistic solutions to the biomagnetic inverse problem. Inverse Prob. 1990, 6:523.
Ioannides A.A., Liu M., Liu L., Bamidis P., Hellstrand E., Stephan K. Magnetic field tomography of cortical and deep processes: examples of "real-time mapping" of averaged and single trial MEG signals. Int. J. Psychophysiol. 1995, 161-175.
Ioannides A.A., Poghosyan V., Dammers J., Streit M. Real-time neural activity and connectivity in healthy individuals and schizophrenia patients. Neuroimage 2004, 23:473-482.
Jacobs B.L., Azmitia E.C. Structure and function of the brain-serotonin system. Physiol. Rev. 1992, 72:165-229.
Jäncke L., Shah N.J., Posse S., Grosse-Ryuken M., Müller-Gärtner H.W. Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 1998, 36:875-883.
Jaworska N., Blondeau C., Tessier P., Norris S., Fusee W., Blier P., Knott V. Response prediction to antidepressants using scalp and source-localized loudness dependence of auditory evoked potential (LDAEP) slopes. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 44:100-107.
Juckel G., Molnar M., Hegerl U., Csepe V., Karmos G. Auditory-evoked potentials as indicator of brain serotonergic activity - first evidence in behaving cats. Biol. Psychiatry 1997, 41:1181-1195.
Juckel G., Pogarell O., Augustin H., Mulert C., Müller-Siecheneder F., Frodl T., Mavrogiorgou P., Hegerl U. Differential prediction of first clinical response to serotonergic and noradrenergic antidepressants using the loudness dependence of auditory evoked potentials in patients with major depressive disorder. J. Clin. Psychiatry 2007, 68:1206-1212.
Juckel G., Kawohl W., Giegling I., Mavrogiorgou P., Winter C., Pogarell O., Mulert C., Hegerl U., Rujescu D. Association of catechol-O-methyltransferase variants with loudness dependence of auditory evoked potentials. Hum. Psychopharmacol. 2008, 23:115-120.
Kähkönen S., Jääskeläinen I.P., Pennanen S., Liesivuori J., Ahveninen J. Acute trytophan depletion decreases intensity dependence of auditory evoked magnetic N1/P2 dipole source activity. Psychopharmacology (Berlin) 2002, 164:221-227.
Kawohl W., Hegerl U., Müller-Oerlinghausen B., Juckel G. Insights in the central serotonergic function in patients with affective disorders. Neuropsychiatry 2008, 22:23.
Kenemans J.L., Kähkönen S. How human electrophysiology informs psychopharmacology: from bottom-up driven processing to top-down control. Neuropsychopharmacology 2011, 36:26-51.
Kiebel S.J., Daunizeau J., Phillips C., Friston K.J. Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. Neuroimage 2008, 39:728-741.
Kim Y.H., Gitelman D.R., Nobre A.C., Parrish T.B., LaBar K.S., Mesulam M.M. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage 1999, 9:269-277.
Knight R.T., Hillyard S.A., Woods D.L., Neville H.J. The effects of frontal and temporal-parietal lesions on the auditory evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 1980, 50:112-124.
Kraus C., Ganger S., Losak J., Hahn A., Savli M., Kranz G.S., Baldinger P., Windischberger C., Kasper S., Lanzenberger R. Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake. Neuroimage 2014, 84:236-244.
Lang P.J., Bradley M.M., Cuthbert B.N. Emotion, attention, and the startle reflex. Psychol. Rev. 1990, 97:377.
Langers D.R., van Dijk P., Schoenmaker E.S., Backes W.H. fMRI activation in relation to sound intensity and loudness. Neuroimage 2007, 35:709-718.
Leech R., Sharp D.J. The role of the posterior cingulate cortex in cognition and disease. Brain 2014, 137:12-32.
Lehmann D., Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 1980, 48:609-621.
Lewis D.A., Campbell M.J., Foote S.L., Morrison J.H. The monoaminergic innervation of primate neocortex. Hum. Neurobiol. 1986, 5:181-188.
Linka T., Müller B.W., Bender S., Sartory G. The intensity dependence of the auditory evoked N1 component as a predictor of response to Citalopram treatment in patients with major depression. Neurosci. Lett. 2004, 367:375-378.
Lockwood A.H., Salvi R.J., Coad M.L., Arnold S.A., Wack D.S., Murphy B., Burkard R.F. The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0kHz tones at varied intensities. Cereb. Cortex 1999, 9:65-76.
Matthews S.C., Simmons A.N., Strigo I.A., Arce E., Stein M.B., Paulus M.P. Escitalopram attenuates posterior cingulate activity during self-evaluation in healthy volunteers. Psychiatry Res. 2010, 182:81-87.
Michel C.M., Murray M.M., Lantz G., Gonzalez S., Spinelli L., Grave de Peralta R. EEG source imaging. Clin. Neurophysiol. 2004, 115:2195-2222.
Mulert C., Juckel G., Augustin H., Hegerl U. Comparison between the analysis of the loudness dependency of the auditory N1/P2 component with LORETA and dipole source analysis in the prediction of treatment response to the selective serotonin reuptake inhibitor citalopram in major depression. Clin. Neurophysiol. 2002, 113:1566-1572.
Mulert C., Jäger L., Propp S., Karch S., Störmann S., Pogarell O., Möller H.J., Juckel G., Hegerl U. Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI. Neuroimage 2005, 28:49-58.
Näätänen R., Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987, 24:375-425.
Neukirch M., Hegerl U., Kötitz R., Dorn H., Gallinat U., Herrmann W.M. Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components. Neuropsychobiology 2002, 45:41-48.
Neuner I., Stoecker T., Kellermann T., Ermer V., Wegener H.P., Eickhoff S.B., Schneider F., Shah N.J. Electrophysiology meets fMRI: neural correlates of the startle reflex assessed by simultaneous EMG-fMRI data acquisition. Hum. Brain Mapp. 2010, 31:1675-1685.
Neuner I., Kawohl W., Arrubla J., Warbrick T., Wyss C., Hitz K., Boers F., Shah J.N. Cortical signal variation in the processing of rising sound pressure levels: a combined event-related potentials and fMRI study. PLoS One 2014, (under review).
Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002, 15:1-25.
Ojima H. Interplay of excitation and inhibition elicited by tonal stimulation in pyramidal neurons of primary auditory cortex. Neurosci. Biobehav. Rev. 2011, 35:2084-2093.
Oldfield R.C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9:97-113.
O'Neill B.V., Croft R.J., Nathan P.J. The loudness dependence of the auditory evoked potential (LDAEP) as an in vivo biomarker of central serotonergic function in humans: rationale, evaluation and review of findings. Hum. Psychopharmacol. Clin. 2008, 23:355-370.
Ostermann J., Uhl I., Köhler E., Juckel G., Norra C. The loudness dependence of auditory evoked potentials and effects of psychopathology and psychopharmacotherapy in psychiatric inpatients. Hum. Psychopharmacol. Clin. 2012, 27:595-604.
Park Y.M., Lee S.H., Kim S., Bae S.M. The loudness dependence of the auditory evoked potential (LDAEP) in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorder, and healthy controls. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34:313-316.
Park Y.M., Kim D.W., Kim S., Im C.H., Lee S.H. The loudness dependence of the auditory evoked potential (LDAEP) as a predictor of the response to escitalopram in patients with generalized anxiety disorder. Psychopharmacology (Berlin) 2011, 213:625-632.
Parvizi J., Van Hoesen G.W., Buckwalter J., Damasio A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:1563-1568.
Picton T.W., Alain C., Woods D.L., John M.S., Scherg M., Valdes-Sosa P., Bosch-Bayard J., Trujillo N.J. Intracerebral sources of human auditory-evoked potentials. Audiol. Neuro Otol. 1999, 4:64-79.
Reite M., Zimmerman J.T., Edrich J., Zimmerman J.E. Auditory evoked magnetic fields: response amplitude vs. stimulus intensity. Electroencephalogr. Clin. Neurophysiol. 1982, 54:147-152.
Schechter G., Buchsbaum M. The effects of attention, stimulus intensity, and individual differences on the average evoked response. Psychophysiology 1973, 10:392-400.
Scherg M., Berg P. Use of prior knowledge in brain electromagnetic source analysis. Brain Topogr. 1991, 4:143-150.
Scherg M., Picton T.W. Separation and identification of event-related potential components by brain electric source analysis. Electroencephalogr. Clin. Neurophysiol. Suppl. 1991, 42:24-37.
Scherg M., Von Cramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 1985, 62:32-44.
Schroeder C.E., Foxe J. Multisensory contributions to low-level, 'unisensory' processing. Curr. Opin. Neurobiol. 2005, 15:454-458.
Seifritz E., Esposito F., Hennel F., Mustovic H., Neuhoff J.G., Bilecen D., Tedeschi G., Scheffler K., Di Salle F. Spatiotemporal pattern of neural processing in the human auditory cortex. Science 2002, 297:1706-1708.
Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Hergueta T., Baker R., Dunbar G.C. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59:22-33.
Sigalovsky I.S., Melcher J.R. Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear. Res. 2006, 215:67-76.
Smith S.W. The Scientist and Engineer's Guide to Digital Signal Processing 1997, California Technical Publ., San Diego, California.
Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009, 44:83-98.
Soeta Y., Nakagawa S. Sound level-dependent growth of N1m amplitude with low and high-frequency tones. Neuroreport 2009, 20:548-552.
Soeta Y., Nakagawa S. Auditory evoked responses in human auditory cortex to the variation of sound intensity in an ongoing tone. Hear. Res. 2012, 287:67-75.
Taylor J.G., Ioannides A.A., Muller-Gartner H.W. Mathematical analysis of lead field expansions. IEEE Trans. Med. Imaging 1999, 18:151-163.
Uppenkamp S., Roehl M. Human auditory neuroimaging of intensity and loudness. Hear. Res. 2013, 307:65-73.
Vasama J.P., Mäkelä J.P., Tissari S.O., Hämäläinen M.S. Effects of intensity variation on human auditory evoked magnetic fields. Acta Otolaryngol. (Stockh.) 1995, 115:616-621.
Velasco M., Velasco F. Subcortical correlates of the somatic, auditory and visual vertex activities. II. Referential EEG responses. Electroencephalogr. Clin. Neurophysiol. 1986, 63:62-67.
Vogt B.A., Finch D.M., Olson C.R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 1992, 2:435-443.
Waldvogel D., van Gelderen P., Muellbacher W., Ziemann U., Immisch I., Hallett M. The relative metabolic demand of inhibition and excitation. Nature 2000, 406:995-998.
Weidner R., Boers F., Mathiak K., Dammers J., Fink G.R. The temporal dynamics of the Muller-Lyer illusion. Cereb. Cortex 2010, 20:1586-1595.
Woods D.L. The component structure of the N 1 wave of the human auditory evoked potential. Electroencephalogr. Clin. Neurophysiol. Suppl. 1995, 44:102-109.
Wu G.K., Tao H.W., Zhang L.I. From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci. Biobehav. Rev. 2011, 35:2094-2104.
Wutzler A., Winter C., Kitzrow W., Uhl I., Wolf R.J., Heinz A., Juckel G. Loudness dependence of auditory evoked potentials as indicator of central serotonergic neurotransmission: simultaneous electrophysiological recordings and in vivo microdialysis in the rat primary auditory cortex. Neuropsychopharmacology 2008, 33:3176-3181.
Wyss C., Hitz K., Hengartner M.P., Theodoridou A., Obermann C., Uhl I., Roser P., Grunblatt E., Seifritz E., Juckel G., Kawohl W. The loudness dependence of auditory evoked potentials (LDAEP) as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms. PLoS One 2013, 8:e68650.
Zacharias N., Konig R., Heil P. Stimulation-history effects on the M100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology 2012, 49:909-919.
Zilles K., Palomero-Gallagher N., Grefkes C., Scheperjans F., Boy C., Amunts K., Schleicher A. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 2002, 12:587-599.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.