Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease
Porato, Mathilde ; Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Chirurgie et clinique chirurgicale des petits animaux
Jarleton, Astrid
Hamon, Martin ; Université de Liège > Clinique vétérinaire universitaire (CVU)
Carroll, James D.
Gommeren, Kris ; Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Pathologie médicale des petits animaux
Balligand, Marc ; Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Chirurgie et clinique chirurgicale des petits animaux
Language :
English
Title :
Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease
Publication date :
31 January 2017
Journal title :
American Journal of Veterinary Research
ISSN :
0002-9645
eISSN :
1943-5681
Publisher :
American Veterinary Medical Association, Schaumburg, United States - Illinois
Hansen HJ. A pathologic-anatomical study on disc degeneration in the dog, with special reference to the so-called enchondrosis intervertebralis. Acta Orthop Scand Suppl 1952;11:1–117.
Scott HW. Hemilaminectomy for the treatment of thoracolumbar disc disease in the dog: a follow-up study of 40 cases. J Small Anim Pract 1997;38:488–494.
Scott HW, McKee WM. Laminectomy for 34 dogs with thoracolumbar intervertebral disc disease and loss of deep pain perception. J Small Anim Pract 1999;40:417–422.
Mann FA, Wagner-Mann CC, Dunphy ED, et al. Recurrence rate of presumed thoracolumbar intervertebral disc disease in ambulatory dogs with spinal hyperpathia treated with anti-inflammatory drugs: 78 cases (1997–2000). J Vet Emerg Crit Care 2007;17:53–60.
Brisson BA. Intervertebral disc disease in dogs. Vet Clin North Am Small Anim Pract 2010;40:829–858.
Olby N, Halling KB, Glick TR. Rehabilitation for the neurologic patient. Vet Clin North Am Small Anim Pract 2005;35:1389–1409.
Marsolais GS, Dvorak G, Conzemius MG. Effects of postoperative rehabilitation on limb function after cranial cruciate ligament repair in dogs. J Am Vet Med Assoc 2002;220:1325– 1330.
Monk ML, Preston CA, McGowan CM. Effects of early intensive postoperative physiotherapy on limb function after tibial plateau leveling osteotomy in dogs with deficiency of the cranial cruciate ligament. Am J Vet Res 2006;67:529–536.
Kathmann I, Cizinauskas S, Doherr MG, et al. Daily controlled physiotherapy increases survival time in dogs with suspected degenerative myelopathy. J Vet Intern Med 2006;20:927–932.
De Risio L, Adams V, Dennis R, et al. Association of clinical and magnetic resonance imaging findings with outcome in dogs suspected to have ischemic myelopathy: 50 cases (2000–2006). J Am Vet Med Assoc 2008;233:129–135.
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015;33:183–184.
Enwemeka CS, Parker JC, Dowdy DS, et al. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 2004;22:323–329.
Bjordal JM, Lopes-Martins RAB, Joensen J, et al. The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Phys Ther Rev 2010;15:286–293.
Kleinkort JA. Low-level laser therapy: new possibilities in pain management and rehab. Orthop Phys Ther Pract 2005;17:48–51.
Chow RT, Johnson MI, Lopes-Martins RAB, et al. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 2009;374:1897– 1908.
Bjordal JM, Couppe C, Chow R, et al. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother 2003;49:107– 116.
Desiderá AC, Nascimento GC, Gerlach RF, et al. Laser therapy reduces gelatinolytic activity in the rat trigeminal ganglion during temporomandibular joint inflammation. Oral Dis 2015;21:652–658.
Stergioulas A. Low-level laser treatment can reduce edema in second degree ankle sprains. J Clin Laser Med Surg 2004;22:125–128.
Huang YY, Chen ACH, Carroll JD, et al. Biphasic dose response in low level light therapy. Dose Response 2009;7:358– 383.
Hashmi JT, Huang YY, Osmani BZ, et al. Role of low-level laser therapy in neurorehabilitation. PM R 2010;2(12 suppl 2):S292–S305.
Lindgård A, Hultén LM, Svensson L, et al. Irradiation at 634 nm releases nitric oxide from human monocytes. Lasers Med Sci 2007;22:30–36.
Chung H, Dai T, Sharma SK, et al. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012;40:516– 533.
Lim WB, Kim JS, Kwon H, et al. Effects of 635 nm light-emitting diode irradiation on angiogenesis in CoCl(2)—exposed HUVECs. Lasers Surg Med 2011;43:344–352.
Huang YY, Nagata K, Tedford CE, et al. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 2013;6:829–838.
de Lima FM, Albertini R, Dantas Y, et al. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 2013;89:179–188.
Gkotsi D, Begum R, Salt T, et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res 2014;122:50–53.
Lim W, Kim J, Lim C, et al. Effect of 635 nm light-emitting diode irradiation on intracellular superoxide anion scavenging independent of the cellular enzymatic antioxidant system. Photomed Laser Surg 2012;30:451–459.
Rizzi CF, Mauriz JL, Freitas Correa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 2006;38:704–713.
Van Breugel HHFI, Bär PR. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner. J Neurocytol 1993;22:185–190.
Wollman Y, Rochkind S, Simantov R. Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 1996;18:467–470.
Wollman Y, Rochkind S. In vitro cellular processes sprouting in cortex microexplants of adult rat brains induced by low power laser irradiation. Neurol Res 1998;20:470–472.
Rochkind S, El-Ani D, Nevo Z, et al. Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy. Lasers Surg Med 2009;41:277– 281.
Fitch MT, Silver J. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 1997;148:587– 603.
Fitch MT, Doller C, Combs CK, et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999;19:8182–8198.
Popovich PG, Guan Z, McGaughy V, et al. The neuropatho-logical and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002;61:623–633.
Byrnes KR, Waynant RW, Ilev IK, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 2005;36:171–185.
von Leden RE, Cooney SJ, Ferrara TM, et al. 808 nm wavelength light induces a dose-dependent alteration in microglial polarization and resultant microglial induced neurite growth. Lasers Surg Med 2013;45:253–263.
Rochkind S, Nissan M, Alon M, et al. Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med 2001;28:216–219.
Shamir MH, Rochkind S, Sandbank J, et al. Double-blind randomized study evaluating regeneration of the rat transected sciatic nerve after suturing and postoperative low-power laser treatment. J Reconstr Microsurg 2001;17:133–137.
Draper WE, Schubert TA, Clemmons RM, et al. Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: a preliminary study. J Small Anim Pract 2012;53:465–469.
Laitinen OM, Puerto DA. Surgical decompression in dogs with thoracolumbar intervertebral disc disease and loss of deep pain perception: a retrospective study of 46 cases. Acta Vet Scand 2005;46:79–85.
Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med 2010;8:18.
Canapp DA. Select modalities. Clin Tech Small Anim Pract 2007;22:160–165.
Davis GJ, Brown DC. Prognostic indicators for time to ambulation after surgical decompression in nonambulatory dogs with acute thoracolumbar disk extrusions: 112 cases. Vet Surg 2002;31:513–518.
Ruddle TL, Allen DA, Schertel ER, et al. Outcome and prognostic factors in nonambulatory Hansen type I intervertebral disc extrusions: 308 cases. Vet Comp Orthop Traumatol 2006;19:29–34.
Millis DL, Levine D, Taylor RA, et al. Sample protocols. In: Canine rehabilitation and physical therapy. St Louis: Elsevier-Saunders, 2004;472–486.
Drum MG. Physical rehabilitation of the canine neurologic patient. Vet Clin North Am Small Anim Pract 2010;40:181– 193.
Wall R. Physical rehabilitation for the paralyzed patient. In: Fingeroth JM, Thomas BT, eds. Advances in intervertebral disc disease in dogs and cats. Ames, Iowa: Wiley-Blackwell, 2014;279–285.
Thota A, Carlson S, Jung R. Recovery of locomotor function after treadmill training of incomplete spinal cord injured rats. Biomed Sci Instrum 2001;37:63–67.
Multon S, Franzen R, Poirrier AL, et al. The effect of treadmill training on motor recovery after a partial spinal cord compression-injury in the adult rat. J Neurotrauma 2003;20:699–706.
Engesser-Cesar C, Anderson AJ, Basso DM, et al. Voluntary wheel running improves recovery from a moderate spinal cord injury. J Neurotrauma 2005;22:157–171.
Fouad K, Metz GA, Merkler D, et al. Treadmill training in incomplete spinal cord injured rats. Behav Brain Res 2000;115:107–113.
Lovely RG, Gregor RJ, Roy RR, et al. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 1986;92:421–435.
Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987;412:84–95.
de Leon RD, Hodgson JA, Roy RR, et al. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 1998;79:1329– 1340.
Levine JM, Levine GJ, Porter BF, et al. Naturally occurring disk herniation in dogs: an opportunity for pre-clinical spinal cord injury research. J Neurotrauma 2011;28:675–688.
Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 2013;94:2297–2308.
Shin JC, Kim JY, Park HK, et al. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med 2014;38:719–725.
Hady LL, Schwarz PD. Recovery times for dogs undergoing thoracolumbar hemilaminectomy with fenestration and physical rehabilitation: a review of 113 cases. J Vet Med Anim Health 2015;7:278–289.
Stevens SL, Caputo JL, Fuller DK, et al. Physical activity and quality of life in adults with spinal cord injury. J Spinal Cord Med 2008;31:373–378.
Aikawa T, Fujita H, Kanazono S, et al. Long-term neurologic outcome of hemilaminectomy and disk fenestration for treatment of dogs with thoracolumbar intervertebral disk herniation: 831 cases (2000–2007). J Am Vet Med Assoc 2012;241:1617–1626.
Dowdle SM, Joubert KE, Lambrechts NE, et al. The prevalence of subclinical gastroduodenal ulceration in Dachshunds with intervertebral disc prolapse. J S Afr Vet Assoc 2003;74:77–81.