1 Fleming, A., On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B Biol. Sci. 93 (1922), 306–317.
2 Artymiuk, P.J., Blake, C.C., Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. J. Mol. Biol. 152 (1981), 737–762.
3 Dumoulin, M., Kumita, J.R., Dobson, C.M., Normal and aberrant biological self-assembly: Insights from studies of human lysozyme and its amyloidogenic variants. Acc. Chem. Res. 39 (2006), 603–610.
4 Pepys, M.B., Hawkins, P.N., et al., Hsuan, J.J., Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362 (1993), 553–557.
5 Gillmore, J.D., Booth, D.R., et al., Hawkins, P.N., Hereditary renal amyloidosis associated with variant lysozyme in a large English family. Nephrol. Dial. Transplant. 14 (1999), 2639–2644.
6 Pepys, M.B., Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356 (2001), 203–210 discussion 210–211.
7 Booth, D.R., Pepys, M.B., Hawkins, P.N., A novel variant of human lysozyme (T70N) is common in the normal population. Hum. Mutat., 16, 2000, 180.
8 Valleix, S., Drunat, S., et al., Grateau, G., Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int. 61 (2002), 907–912.
9 Yazaki, M., Farrell, S.A., Benson, M.D., A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int. 63 (2003), 1652–1657.
10 Röcken, C., Becker, K., et al., Albert, F.W., ALys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum. Mutat. 27 (2006), 119–120.
11 Girnius, S., Skinner, M., et al., Connors, L.H., A new lysozyme tyr54asn mutation causing amyloidosis in a family of Swedish ancestry with gastrointestinal symptoms. Amyloid 19 (2012), 182–185.
12 Funahashi, J., Takano, K., et al., Yutani, K., The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J. Biochem. 120 (1996), 1216–1223.
13 Booth, D.R., Sunde, M., et al., Pepys, M.B., Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385 (1997), 787–793.
14 Canet, D., Sunde, M., et al., Dobson, C.M., Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry 38 (1999), 6419–6427.
15 Dumoulin, M., Canet, D., et al., Dobson, C.M., Reduced global cooperativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J. Mol. Biol. 346 (2005), 773–788.
16 Kumita, J.R., Johnson, R.J., et al., Dobson, C.M., Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris. FEBS J. 273 (2006), 711–720.
17 Canet, D., Last, A.M., et al., Dobson, C.M., Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol. 9 (2002), 308–315.
18 Dhulesia, A., Cremades, N., et al., Dobson, C.M., Local cooperativity in an amyloidogenic state of human lysozyme observed at atomic resolution. J. Am. Chem. Soc. 132 (2010), 15580–15588.
19 Hagan, C.L., Johnson, R.J., et al., Kumita, J.R., A non-natural variant of human lysozyme (I59T) mimics the in vitro behaviour of the I56T variant that is responsible for a form of familial amyloidosis. Protein Eng. Des. Sel. 23 (2010), 499–506.
20 Johnson, R.J., Christodoulou, J., et al., Dobson, C.M., Rationalising lysozyme amyloidosis: insights from the structure and solution dynamics of T70N lysozyme. J. Mol. Biol. 352 (2005), 823–836.
21 Dumoulin, M., Last, A.M., et al., Dobson, C.M., A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424 (2003), 783–788.
22 Chan, P.-H., Pardon, E., et al., Dumoulin, M., Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils. Biochemistry 47 (2008), 11041–11054.
23 De Genst, E., Chan, P.-H., et al., Dumoulin, M., A nanobody binding to non-amyloidogenic regions of the protein human lysozyme enhances partial unfolding but inhibits amyloid fibril formation. J. Phys. Chem. B 117 (2013), 13245–13258.
24 Buell, A.K., Dhulesia, A., et al., Dobson, C.M., Population of nonnative states of lysozyme variants drives amyloid fibril formation. J. Am. Chem. Soc. 133 (2011), 7737–7743.
25 Frare, E., Mossuto, M.F., et al., Fontana, A., Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J. Mol. Biol. 361 (2006), 551–561.
26 Takano, K., Ogasahara, K., et al., Yutani, K., Contribution of hydrophobic residues to the stability of human lysozyme: calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants. J. Mol. Biol. 254 (1995), 62–76.
27 Takano, K., Funahashi, J., et al., Yutani, K., Contribution of water molecules in the interior of a protein to the conformational stability. J. Mol. Biol. 274 (1997), 132–142.
28 Funahashi, J., Takano, K., et al., Yutani, K., Contribution of amino acid substitutions at two different interior positions to the conformational stability of human lysozyme. Protein Eng. 12 (1999), 841–850.
29 Mombelli, E., Afshar, M., et al., Lange, R., The role of phenylalanine 31 in maintaining the conformational stability of ribonuclease P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure. Biochemistry 36 (1997), 8733–8742.
30 Greene, R.F. Jr., Pace, C.N., Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin. J. Biol. Chem. 249 (1974), 5388–5393.
31 Mossuto, M.F., Dhulesia, A., et al., Salvatella, X., The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J. Mol. Biol. 402 (2010), 783–796.
32 Chiti, F., Dobson, C.M., Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5 (2009), 15–22.
33 Chiti, F., Dobson, C.M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75 (2006), 333–366.
34 Kelly, J.W., Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6 (1996), 11–17.
35 Dobson, C.M., Protein misfolding, evolution and disease. Trends Biochem. Sci. 24 (1999), 329–332.
36 Kumita, J.R., Poon, S., et al., Dobson, C.M., The extracellular chaperone clusterin potently inhibits human lysozyme amyloid formation by interacting with prefibrillar species. J. Mol. Biol. 369 (2007), 157–167.
37 Vendruscolo, M., Paci, E., et al., Dobson, C.M., Structures and relative free energies of partially folded states of proteins. Proc. Natl. Acad. Sci. USA 100 (2003), 14817–14821.
38 Geyer, M., Herrmann, C., et al., Kalbitzer, H.R., Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat. Struct. Biol. 4 (1997), 694–699.