[en] Patterns of specificity among symbiotic partners are key to a comprehensive understanding of the evolution of symbiotic systems. Specificity of mutualistic partners, within a widespread monophyletic group for which all species are sampled has rarely been explored. Here, we assess the level of specificity between the cosmopolitan lichen-forming fungus (mycobiont) from the genus Peltigera, section Polydactylon, and its cyanobacterial partner Nostoc (cyanobiont). The mycobiont and cyanobiont phylogenies are inferred from five nuclear loci and the rbcLX region, respectively. These sequences were obtained from 206 lichen thalli, representing ca. 40 closely related Peltigera species sampled worldwide, doubling the number of known species in this group. We found a broad spectrum of specificity for both partners ranging from strict specialists to generalists. Overall, mycobionts are more specialized than cyanobionts by associating mostly with one or a few Nostoc phylogroups, whereas most cyanobionts associate frequently with several Peltigera species. Specialist mycobionts are older than generalists, supporting the hypothesis that specialization of mycobionts to one or few cyanobionts, is favored through time in geographic areas where species have been established for long periods of time. The relatively recent colonization of a new geographic area (Central and South America) by members of section Polydactylon is associated with a switch to a generalist pattern of association and an increased diversification rate by the fungal partner, suggesting that switches to generalism are rare events that are advantageous in new environments. We detected higher genetic diversity in generalist mycobionts. We also found that Peltigera species specialized on a single Nostoc phylogroup have narrower geographical distributions compared with generalist species.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., Harmon, L.J., Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates (2009) Proc. Natl. Acad. Sci. USA., 106, pp. 13410-13414
Axelrod, R., Hamilton, W.D., The evolution of cooperation (1981) Science, 211, pp. 1390-1396
Beltrami, O., (2008) Assessing Taxonomic Issues with the Genera Anabaena, Aphanizomenon and Nostoc Using Morphology, 16S RRNA and Efp Genes [Doctoral Dissertation], , [Ontario (Canada)]: University of Waterloo
Bendiksby, M., Timdal, E., Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): Extreme polyphyly and morphological/ecological convergence (2013) Taxon, 62, pp. 940-956
Bergstrom, C.T., Lachmann, M., The Red King effect: When the slowest runner wins the coevolutionary race (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 593-598
Bollback, J.P., SIMMAP: Stochastic character mapping of discrete traits on phylogenies (2006) BMC Bioinformatics, 7, p. 88
Budel, B., Scheidegger, C., Thallus morphology and anatomy (2008) Lichen Biology, pp. 37-64. , Nash T.H., editor. Cambridge: Cambridge University Press
Casano, L.M., Del Campo, E.M., Garcia-Breijo, F.J., Reig-Arminana, J., Gasulla, F., Del Hoyo, A., Guera, A., Barreno, E., Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? (2011) Environ. Microbiol., 13, pp. 806-818
Chen, K.-H., Miadlikowska, J., Molnar, K., Arnold, A.E., U'Ren, J.M., Gaya, E., Gueidan, C., Lutzoni, F., Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales and a new order-Phaeomoniellales (2015) Mol. Phylogenet. Evol., 85, pp. 117-130
Clement, M., Posada, D., Crandall, K.A., TCS:Acomputer program to estimate gene genealogies (2000) Mol. Ecol., 9, pp. 1657-1659
Cubero, O.F., Crespo, A., Fatehi, J., Bridge, P.D., DNA extraction and PCRamplification method suitable for fresh, herbarium-stored, lichenized, and other fungi (1999) Plant Syst. Evol., 216, pp. 243-249
Dal Grande, F., Widmer, I., Wagner, H.H., Scheidegger, C., Vertical and horizontal photobiont transmission within populations of a lichen symbiosis (2012) Mol. Ecol., 21, pp. 3159-3172
De Queiroz, K., The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations (1998) Endless Forms: Species and Speciation, pp. 57-75. , Howard D.J., Berlocher S.H., editors. Oxford: Oxford University Press
Doebeli, M., Knowlton, N., The evolution of interspecific mutualisms (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 8676-8680
Doolittle, W.F., Phylogenetic classification and the universal tree (1999) Science, 284, pp. 2124-2128
Drew, E.A., Smith, D.C., Studies in the physiology of lichens. VII. The physiology of the Nostoc symbiont of Peltigera polydactyla compared with cultured and free-living forms (1967) New Phytol, 66, pp. 379-388
Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7, p. 214
Elvebakk, A., Papaefthimiou, D., Robertsen, E.H., Liaimer, A., Phylogenetic patterns among Nostoc cyanobionts within bi-and tripartite lichens of the genus Pannaria (2008) J. Phycol., 44, pp. 1049-1059
Fernandez-Mendoza, F., Domaschke, S., Garcia, M.A., Jordan, P., Martin, M.P., Printzen, C., Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeate (2011) Mol. Ecol., 20, pp. 1208-1232
FitzJohn, R.G., Diversitree: Comparative phylogenetic analyses of diversification in R (2012) Methods Ecol. Evol., 3, pp. 1084-1092
Flechtner, V.R., Pietrasiak, N., Lewis, L.A., Newly revealed diversity of eukaryotic algae from wilderness areas of Joshua Tree National Park (JTNP) (2013) Monogr. West N. Am. Nat., 6, pp. 43-63
Frank, S.A., Host-symbiont conflict over the mixing of symbiotic lineages (1996) Proc. R. Soc. Lond. B Biol. Sci., 263, pp. 339-344
Friedl, T., Budel, B., Photobionts (2008) Lichen Biology, pp. 9-26. , Nash T.H., editor. Cambridge: Cambridge University Press
Fučikova, K., Lewis, P.O., Lewis, L.A., Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert lineages (2014) Phycol. Res., 62, pp. 294-305
Galun, M., Kardish, N., Lectins as determinants of symbiotic specificity in lichens (1995) Cryptogamic Botany, 5, p. 144
Gardes, M., Bruns, T.D., ITS primers with enhanced specificity for basidiomycetes-application to the identification ofmycorrhizae and rusts (1993) Mol. Ecol., 2, pp. 113-118
Gaya, E., Hognabba, F., Holguin, A., Molnar, K., Fernandez-Brime, S., Stenroos, S., Arup, U., Lutzoni, F., Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota) (2012) Mol. Phylogenet. Evol., 63, pp. 374-387
Gaya, E., Redelings, B.D., Navarro-Rosines, P., Llimona, X., DeCaceres, M., Lutzoni, F., Align, or not to align? Resolving species complexes within the Caloplaca saxicola group as a case study (2011) Mycologia, 103, pp. 361-378
Glass, N.L., Donaldson, G.C., Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes (1995) Appl. Environ. Microb., 61, pp. 1323-1330
Gokhale, C.S., Traulsen, A., Mutualism and evolutionary multiplayer games: Revisiting the Red King (2012) Proc. R. Soc. Lond. B Biol. Sci., 279, pp. 4611-4616
Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W., GEIGER: Investigating evolutionary radiations (2008) Bioinformatics, 24, pp. 129-131
Holtan-Hartwig, J., (1993) The Lichen Genus 'Peltigera', Exclusive of the 'P. Canina' Group, in Norway, , Botanical Garden and Museum-University of Oslo
Heled, J., Drummond, A.J., Bayesian inference of species trees from multilocus data (2010) Mol. Biol. Evol., 27, pp. 570-580
Honegger, R., The lichen symbiosis-what is so spectacular about it? (1998) Lichenologist, 30, pp. 193-212
Huelsenbeck, J.P., Andolfatto, P., Huelsenbeck, E.T., Structurama: Bayesian inference of population structure (2011) Evol. Bioinform. Online, 7, p. 55
Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755
Joneson, S., Armaleo, D., Lutzoni, F., Fungal and algal gene expression in early developmental stages of lichen-symbiosis (2010) Mycologia, 103, pp. 291-306
Kirk, P., Cannon, P., Minter, D., Stalpers, J., (2008) Ainsworth & Bisby's Dictionary of the Fungi, , 10th ed. Wallingford, UK, CABI Publishing
Lanfear, R., Calcott, B., Ho, S.Y., Guindon, S., PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses (2012) Mol. Biol. Evol., 29, pp. 1695-1701
Law, R., Evolution in amutualistic environment (1985) The Biology of Mutualism: Ecology and Evolution, pp. 145-170. , Boucher D.H., editor. Oxford: Oxford University Press
Law, R., Lewis, D., Biotic environments and the maintenance of sex-some evidence from mutualistic symbioses (1983) Biol. J. Linn. Soc., 20, pp. 249-276
Leavitt, S.D., Fankhauser, J.D., Leavitt, D.H., Porter, L.D., Leigh, A.J., St Clair, L.L., Complex patterns of speciation in cosmopolitan rock posy" lichens-discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma speciescomplex (Lecanoraceae, Ascomycota) (2011) Mol. Phylogenet. Evol., 59, pp. 587-602
Legaz, M.-E., Fontaniella, B., Millanes, A.-M., Vicente, C., Secreted arginases from phylogenetically far-related lichen species act as cross-recognition factors for two different algal cells (2004) Eur. J. Cell Biol., 83, pp. 435-446
Li, L.A., Tabita, L.R., Maximum activity of recombinant ribulose 1,5 bisphosphate carboxylase/oxygenase of Anabaena sp. Strain CA requires the product of the rbcX gene (1997) J. Bacteriol., 179, pp. 3793-3796
Lozupone, C., Hamady, M., Knight, R., UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context (2006) BMC Bioinformatics, 7, p. 371
Lozupone, C., Knight, R., UniFrac: A new phylogenetic method for comparing microbial communities (2005) Appl. Environ. Microbiol, 71, pp. 8228-8235
Lucking, R., Hodkinson, B.P., Stamatakis, A., Cartwright, R.A., PICSOrd: Unlimited coding of ambiguous regions by pairwise identity and cost scores ordination (2011) BMC Bioinformatics, 12, p. 10
Lucking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P.M., Bungartz, F., Moncada, B., Yanez-Ayabaca, A., Lawrey, J.D., A single macrolichen constitutes hundreds of unrecognized species (2014) Proc. Natl. Acad. Sci. USA., 111, pp. 11091-11096
Lumbsch, H.T., Chaves-Chaves, J.L., Umana-Tenorio, L., Lucking, R., One hundred new species of lichenized fungi: A signature of undiscovered global diversity un centenar de nuevas especies de hongos liquenizados: Una firma de la diversidad mundial por descubrir (2011) Phytotaxa, 18, pp. 1-127
Lumbsch, H.T., Leavitt, S.D., Goodbye morphology? A paradigm shift inthe delimitation of species in lichenized fungi (2011) Fungal Divers, 50, pp. 59-72
Lutzoni, F., Nowak, M.D., Alfaro, M.E., Reeb, V., Miadlikowska, J., Swofford, D., Arnold, A.E., Magallon, S., (2016) Synchronized Radiations of Fungi and Plants Linked to Symbiosis, , in review
Lutzoni, F., Pagel, M., Reeb, V., Major fungal lineages are derived from lichen symbiotic ancestors (2001) Nature, 411, pp. 937-940
Lutzoni, F., Wagner, P., Reeb, V., Zoller, S., Integrating ambiguously aligned regions ofDNAsequences in phylogenetic analyses without violating positional homology (2000) Syst. Biol., 49, pp. 628-651
Maddison, D., Maddison, W., (2005) MacClade V. 4.08, , Sinauer Associates
Maddison, W.P., Midford, P.E., Otto, S.P., Estimating a binary character's effect on speciation and extinction (2007) Syst. Biol., 56, pp. 701-710
Magain, N., Goffinet, B., Serusiaux, E., Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of Dendriscocaulon cyanomorphs (2012) Bryologist, 115, pp. 243-254
Magain, N., Serusiaux, E., Afurther newspecies in the lichen genus Arctomia: A. Borbonica from Reunion (Mascarene archipelago) (2012) MycoKeys, 4, pp. 9-21
Magain, N., Serusiaux, E., Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales) (2014) PLoS One, 9, p. e89876
Martinez, I., Burgaz, A.R., Vitikainen, O., Escudero, A., Distribution patterns in the genus Peltigera Willd (2003) Lichenologist, 35, pp. 301-323
Mason-Gamer, R., Kellogg, E., Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Gramineae) (1996) Syst. Biol., 45, pp. 524-545
Matheny, P.B., Liu, Y.J., Ammirati, J.F., Hall, B.D., Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales) (2002) Am. J. Bot., 89, pp. 688-698
May, R.M., Mutualistic interactions among species (1982) Nature, 296, pp. 803-804
McDonald, T.R., Gaya, E., Lutzoni, F., Twenty-five cultures of lichenizing fungi available for experimental studies on symbiotic systems (2013) Symbiosis, 59, pp. 165-171
Medina, R., Lara, F., Goffinet, B., Garilleti, R., Mazimpaka, V., Unnoticed diversity within the disjunct moss Orthotrichum tenellum sl validated by morphological and molecular approaches (2013) Taxon, 62, pp. 1133-1152
Miadlikowska, J., Lutzoni, F., Phylogenetic revision of the genus Peltigera (lichen-forming ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data (2000) Int. J. Plant Sci., 161, pp. 925-958
Miadlikowska, J., Lutzoni, F., Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits (2004) Am. J. Bot., 91, pp. 449-464
Miadlikowska, J., Lutzoni, F., Goward, T., Zoller, S., Posada, D., New approach to an old problem: Incorporating signal from gap-rich regions of ITS and rDNAlarge subunit into phylogenetic analyses to resolve thePeltigera canina speciescomplex (2003) Mycologia, 95, pp. 1181-1203
Miadlikowska, J., Richardson, D., Magain, N., Ball, B., Anderson, F., Cameron, R., Lendemer, J., Lutzoni, F., Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes) (2014) Am. J. Bot., 101, pp. 1141-1156
Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES science gateway for inference of large phylogenetic trees (2010) Gateway Computing Environments Workshop (GCE), 2010, IEEE, pp. 1-8
Moran, N.A., Dohlen, C.D., Baumann, P., Faster evolutionary rates in endosymbiotic bacteria than in cospeciating insect hosts (1995) J. Mol. Evol., 41, pp. 727-731
Myllys, L., Stenroos, S., Thell, A., Kuusinen, M., High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland (2007) New Phytol, 173, pp. 621-629
Nylander, J., (2004) MrModeltest v2, , Uppsala University: Evolutionary Biology Centre, Program distributed by the author
Nylander, J.A., Wilgenbusch, J.C., Warren, D.L., Swofford, D.L., AWTY (are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics (2008) Bioinformatics, 24, pp. 581-583
O'Brien, H.E., Miadlikowska, J., Lutzoni, F., Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera (2005) Eur. J. Phycol., 40, pp. 363-378
O'Brien, H.E., Miadlikowska, J., Lutzoni, F., Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera (2009) Evolution, 63, pp. 2076-2086
O'Brien, H.E., Miadlikowska, J., Lutzoni, F., Assessing population structure and host specialization in lichenized cyanobacteria (2013) New Phytol, 198, pp. 557-566
O'Donnell, K., Cigelnik, E., Two divergent intragenomicrDNAITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous (1997) Mol. Phylogenet. Evol., 7, pp. 103-116
Oksanen, I., Lohtander, K., Paulsrud, P., Rikkinen, J., A molecular approach to cyanobacterial diversity in a rock-pool community involving gelatinous lichens and free-living Nostoc colonies (2002) Ann. Bot. Fenn., 39, pp. 93-100
Ollerton, J., Biological barter Patterns of specialization compared across different mutualisms (2006) Plant Pollinator Interactions: From Specialization to Generalization, pp. 411-435. , Waser N.M., Ollerton J., editors. Chicago University of Chicago Press
Oren, A., Prokaryote diversity and taxonomy: Current status and future (2004) Phil. Trans. R. Soc. Lond. B, 359, pp. 623-638
Otalora, M.A., Martinez, I., O'Brien, H.E., Molina, M.C., Aragon, G., Lutzoni, F., Multiple Origins of High Reciprocal Symbiotic Specificity at An Intercontinental Spatial Scale among Gelatinous Lichens (Collemataceae, Lecanoromycetes) (2010) Mol. Phylogenet. Evol., 56, pp. 1089-1095
Otailora, M.A., Salvador, C., Martiinez, I., Aragoin, G., Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species (2013) Microb. Ecol., 65, pp. 517-530
Otalora, M.A., Wedin, M., Collema fasciculare belongs in Arctomiaceae (2013) Lichenologist, 45, pp. 295-304
Pagel, M., Meade, A., (2004) BayesTraits Manual, , http://www.evolution.rdg.ac.uk/BayesTraits.html
Pagel, M., Meade, A., Barker, D., Bayesian estimation of ancestral character states on phylogenies (2004) Syst. Biol., 53, pp. 673-684
Paulsrud, P., Lindblad, P., Sequence variation of the t RNA Leu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens (1998) Appl Environ Microbiol, 64, pp. 310-315
Paulsrud, P., Rikkinen, J., Lindblad, P., Spatial patterns of photobiont diversity in some Nostoc-containing lichens (2000) NewPhytol, 146, pp. 291-299
Peksa, O.E., Ŝkaloud, P., Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae) (2011) Mol. Ecol., 20, pp. 3936-3948
Piercey-Normore, M.D., DePriest, P.T., Algal switching among lichen symbioses (2001) Am. J. Bot., 88, pp. 1490-1498
Pino-Bodas, R., Burgaz, A.R., Martin, M.P., Lumbsch, H.T., Phenotypical plasticity and homoplasy complicate species delimitation in the Cladonia gracilis group (Cladoniaceae, Ascomycota) (2011) Org. Divers. Evol., 11, pp. 343-355
Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Vogler, A.P., Sequencebased species delimitation for the DNA taxonomy of undescribed insects (2006) Syst. Biol., 55, pp. 595-609
Rabosky, D.L., Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees (2014) PLoS One, 9, p. e89543
Rabosky, D.L., Grundler, M., Anderson, C., Shi, J.J., Brown, J.W., Huang, H., Larson, J.G., BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees (2014) Methods Ecol. Evol., 5, pp. 701-707
Rambaut, A., Drummond, A., (2007) Tracer v1. 4., , http://tree.bio.ed.ac.uk/software/tracer/
Reeb, V., Lutzoni, F., Roux, C., Multilocus phylogenetic circumscription of the lichen-forming fungi family Acarosporaceae and its position within the Ascomycota (2004) Mol. Phylogenet Evol, 32, pp. 1036-1060
Reid, N., Carstens, B., Phylogenetic estimation error can decrease the accuracy of species delimitation: A Bayesian implementation of the general mixed Yule-coalescent model (2012) BMC Evol. Biol., 12, p. 196
Rodriguez, F.J., Oliver, J.L., Marin, A., Medina, J.R., The general stochastic model of nucleotide substitution (1990) J. Theor. Biol, 142, pp. 485-501
Rudi, K., Skulberg, O.M., Jakobsen, K.S., Evolution of cyanobacteria by exchange of genetic material among phyletically related strains (1998) J. Bacteriol., 180, pp. 3453-3461
Sachs, J.L., Essenberg, C.J., Turcotte, M.M., New paradigms for the evolution of beneficial infections (2011) Trends Ecol. Evol., 26, pp. 202-209
Serusiaux, E., Goffinet, B., Miadlikowska, J., Vitikainen, O., Taxonomy, phylogeny and biogeography of the lichen genus Peltigera in Papua New Guinea (2009) Fungal Divers, 38, pp. 185-224
Stamatakis, A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690
Stamatakis, A., Hoover, P., Rougemont, J., A rapid bootstrap algorithm for the RAxML Web servers (2008) Syst. Biol., 57, pp. 758-771
Stiller, J.W., Hall, B.D., The origin of red algae: Implications for plastid evolution (1997) Proc. Natl. Acad. Sci. USA., 94, pp. 4520-4525
Svenning, M.M., Eriksson, T., Rasmussen, U., Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16SrDNA sequence analyses (2005) Arch. Microbiol., 183, pp. 19-26
Tainaka, K., Yoshida, N., Terazawa, N., Nakagiri, N., Hashimoto, T., Takeuchi, Y., Yoshimura, J., The effect of mutualism on community stability (2003) J. Phys. Soc. Jpn., 72, pp. 956-961
Thompson, J.N., (1994) The Coevolutionary Process, , Chicago University of Chicago Press
Thompson, J.N., (2005) The Geographic Mosaic of Coevolution, , Chicago: University of Chicago Press
Thompson, J.N., Cunningham, B.M., Geographic structure and dynamics of coevolutionary selection (2002) Nature, 417, pp. 735-738
Trivers, R.L., The evolution of reciprocal altruism (1971) Q. Rev. Biol., 46, pp. 35-57
Van Valen, L., The red queen lives (1976) Nature, 260, p. 575
Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K., Swings, J., Polyphasic taxonomy, a consensus approach to bacterial systematics (1996) Microbiol. Rev., 60, pp. 407-438
De Vienne, D., Refregier, G., Lopez-Villavicencio, M., Tellier, A., Hood, M., Giraud, T., Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytol, 198, pp. 347-385
Vilgalys, R., Hester, M., Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species (1990) J. Bacteriol., 172, pp. 4238-4246
Vitikainen, O., Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe (1994) Acta Bot. Fenn., 152, pp. 1-96
Vitikainen, O., Taxonomic notes on neotropical species of Peltigera (1998) Lichenology in Latin America: History, Current Knowledge and Applications. Sao Paulo: Companhia de Tecnologia de Saneamento Ambiental, pp. 135-139. , Marcelli M.P., Seaward M.R., editors
Vivas, M., Sacristan, M., Legaz, M., Vicente, C., The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens (2010) Plant Biol., 12, pp. 615-621
Wedin, M., Doring, H., Gilenstam, G., Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex (2004) New Phytol, 164, pp. 459-465
Werth, S., Scheidegger, C., Congruent genetic structure in the lichen-forming fungus Lobaria pulmonaria and its green-algal photobiont (2012) Mol. Plant Microbe Interact., 25, pp. 220-230
Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Yaschenko, E., Database resources of the national center for biotechnology information (2007) Nucleic Acids Res., 35, pp. D5-D12
White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (1990) PCR Protocols: A Guide to Methods and Applications., 18, pp. 315-322
Wirtz, N., Lumbsch, H.T., Green, T.G.A., Turk, R., Pintado, A., Sancho, L., Schroeter, B., Lichen fungi have low cyanobiont selectivity in maritime Antarctica (2003) New Phytol, 160, pp. 177-183
Wolin, C.L., The population dynamics of mutualistic systems (1985) The Biology of Mutualism: Ecology and Evolution, pp. 248-269. , Boucher D.H., editor. Oxford: Oxford University Press
Yoshimura, J., Amagai, H., Suzuki, T., Togashi, T., Miyazaki, T., Population dynamics of some mutualistic relationships. Proceedings of the International Congress on Modelling and Simulation (2003) Townsville, pp. 730-735
Zolan, M., Pukkila, P., Inheritance of DNAmethylation in Coprinus cinereus (1986) Mol. Cell. Biol., 6, pp. 195-200
Zoller, S., Lutzoni, F., Slow algae, fast fungi: Exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa (2003) Mol. Phylogenet. Evol., 29, pp. 629-640
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.