[en] Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers
can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under con nement. This paper reports a joint experimental and simulation study of di usion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, di usion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is con rmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.
Disciplines :
Materials science & engineering Physics
Author, co-author :
Kondrashova, D; University of Leipzig
Lauerer, A; University of Leipzig
Mehlhorn, D; University of Leipzig
Jobic, H; Quantachrome Ins.
Fledhoff, A.; Leibniz University Hannover
Thommes; Quantachrome Ins.
Chakraborty, D; Indian Institute of Science Education & Research Mohali,
Gommes, Cédric ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813-821 (2002).
Rolison, D. R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299, 1698-1701 (2003).
Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703-705 (1996).
Trau, M. et al. Microscopic patterning of orientated mesoscopic silica through guided growth. Nature 390, 674-676 (1997).
Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278, 264-268 (1997).
Richman, E. K., Brezesinski, T. & Tolbert, S. H. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy. Nat Mater 7, 712-717 (2008).
Canham, L. Handbook of Porous Silicon (Springer International Publishing, 2015).
Bisi, O., Ossicini, S. & Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1-126 (2000).
Kovalev, D. & Fujii, M. Silicon nanocrystals: Photosensitizers for oxygen molecules. Adv. Mater. 17, 2531-2544 (2005).
Xu, W. J. et al. A Nanostopper Approach To Selectively Engineer the Surfaces of Mesoporous Silicon. Chem. Mat. 26, 6734-6742 (2014).
Tamarov, K. P. et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci. Rep. 4 (2014).
Striemer, C. C., Gaborski, T. R., McGrath, J. L. & Fauchet, P. M. Charge-And size-based separation of macromolecules using ultrathin silicon membranes. Nature 445, 749-753 (2007).
Dancil, K. P. S., Greiner, D. P. & Sailor, M. J. A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121, 7925-7930 (1999).
Gongalsky, M. B. et al. Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging. Appl. Phys. Lett. 107, 4 (2015).
Barthelemy, P. et al. Optical switching by capillary condensation. Nature Photonics 1, 172-175 (2007).
Matthias, S. & Müller, F. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature 424, 53-57 (2003).
Thakur, M. et al. Freestanding Macroporous Silicon and Pyrolyzed Polyacrylonitrile As a Composite Anode for Lithium Ion Batteries. Chem. Mat. 24, 2998-3003 (2012).
Coasne, B., Grosman, A., Ortega, C. & Simon, M. Adsorption in noninterconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon. Phys. Rev. Lett. 88, 256102 (2002).
Wallacher, D., Kunzner, N., Kovalev, D., Knorr, N. & Knorr, K. Capillary condensation in linear mesopores of different shape. Phys. Rev. Lett. 92, 195704 (2004).
Khokhlov, A., Valiullin, R., Kärger, J., Steinbach, F. & Feldhoff, A. Freezing and melting transitions of liquids in mesopores with inkbottle geometry. New J. Phys. 9, 272 (2007).
Grosman, A. & Ortega, C. Cavitation in Metastable Fluids Confined to Linear Mesopores. Langmuir 27, 2364-2374 (2011).
Lauerer, A. et al. Micro-imaging of liquid-vapor phase transition in nano-channels. Microporous Mesoporous Mat. 214, 143-148 (2015).
de Smet, L. C. P. M. et al. Diffusion in porous silicon: effects on the reactivity of alkenes and electrochemistry of alkylated porous silicon. Electrochim. Acta 47, 2653-2663 (2002).
Naumov, S., Khokhlov, A., Valiullin, R., Kärger, J. & Monson, P. A. Understanding capillary condensation and hysteresis in porous silicon: Network effects within independent pores. Phys. Rev. E 78, 060601-060604 (2008).
Sailor, M. J. Porous Silicon in Practice. (Wiley-VCH, 2012).
Naumov, S., Valiullin, R., Kärger, J. & Monson, P. A. Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels. Phys. Rev. E 80, 031607 (2009).
Prestidge, C. A. et al. Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin. Drug Deliv. 4, 101-110 (2007).
Iacob, C. et al. Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Phys. Chem. Chem. Phys. 12, 13798-13803 (2010).
Fry, N. L., Boss, G. R. & Sailor, M. J. Oxidation-Induced Trapping of Drugs in Porous Silicon Microparticles. Chem. Mat. 26, 2758-2764 (2014).
Callaghan, P. T. Translational Dynamics & Magnetic Resonance. (Oxford University Press, 2011).
Kärger, J., Ruthven, D. M. & Theodorou, D. Diffusion in zeolites and other nanoporous materials. (Wiley-VCH, 2012).
Valiullin, R., Kortunov, P., Kärger, J. & Timoshenko, V. Concentration-dependent self-diffusion of liquids in nanopores: A nuclear magnetic resonance study. J. Chem. Phys. 120, 11804-11814 (2004).
Valiullin, R. ed Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids and Heterogeneous Materials (The Royal Society of Chemistry, Cambridge, UK, 2017).
Naumov, S., Valiullin, R., Kärger, J., Pitchumani, R. & Coppens, M.-O. Tracing pore connectivity and architecture in nanostructured silica SBA-15. Microporous Mesoporous Mat. 110, 37-40 (2008).
Callaghan, P. T. & Coy, A. Evidence for Reptational Motion and the Entanglement Tube in Semidilute Polymer-Solutions. Phys. Rev. Lett. 68, 3176-3179 (1992).
Kukla, V. et al. NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702-704 (1996).
Karger, J. & Spindler, H. Tracing indications of anomalous diffusion in adsorbent adsorbate systems by PFG NMR-spectroscopy. J. Am. Chem. Soc. 113, 7571-7574 (1991).
Forman, E. M. et al. Self-diffusion of heptane inside aggregates of porous alumina particles by pulsed field gradient NMR. Microporous Mesoporous Mat. 229, 117-123 (2016).
Bunde, A. & Havlin, S. Fractals and Disordered Systems (Springer-Verlag, Berlin, Heidelberg, New York, 1996).
Bouchaud, J. P. & Georges, A. Anomalous Diffusion in Disordered Media-Statistical Mechanisms, Models and Physical Applications. Phys. Rep. 195, 127-293 (1990).
Jobic, H. In Science and Technology-Molecular Sieves Vol. vol. 7 Adsorption and Diffusion (eds Karge, H. G. & Weitkamp, J.) 207-233 (Springer, 2008).
Hofmann, T. et al. Molecular dynamics of n-hexane: A quasi-elastic neutron scattering study on the bulk and spatially nanochannelconfined liquid. J. Chem. Phys. 136 (2012).
Cui, S. T. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick's law predictions. J. Chem. Phys. 123, 4 (2005).
Carbajal-Tinoco, M. D., Lopez-Fernandez, R. & Arauz-Lara, J. L. Asymmetry in Colloidal Diffusion near a Rigid Wall. Phys. Rev. Lett. 99, 138303-138304 (2007).
Friedrich, H., Sietsma, J. R. A., de Jongh, P. E., Verkleij, A. J. & de Jong, K. P. Measuring location, size, distribution, and loading of NiO crystallites in individual SBA-15 pores by electron tomography. J. Am. Chem. Soc. 129, 10249-10254 (2007).
Grothausmann, R. et al. Quantitative Structural Assessment of Heterogeneous Catalysts by Electron Tomography. J. Am. Chem. Soc. 133, 18161-18171 (2011).
Vasenkov, S. & Kärger, J. Evidence for the existence of intracrystalline transport barriers in MFI-type zeolites: a model consistency check using MC simulations. Microporous Mesoporous Mat. 55, 139-145 (2002).
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology 116, 71-76 (1996).
Shakhov, A., Valiullin, R. & Kärger, J. Tracing Molecular Propagation in Dextran Solutions by Pulsed Field Gradient NMR. J. Phys. Chem. Lett. 3, 1854-1857 (2012).
Valiullin, R. & Kärger, J. In Anomalous Transport: Foundations and Applications (eds Klages, R., Radons, G. & Sokolov, I. M.) (Wiley-VCH, 2008).
Kimmich, R. & Fatkullin, N. Polymer chain dynamics and NMR. Nmr-3d Analysis-Photopolymerization 170, 1-113 (2004).
Tallarek, U., Bayer, E. & Guiochon, G. Study of dispersion in packed chromatographic columns by pulsed field gradient nuclear magnetic resonance. J. Am. Chem. Soc. 120, 1494-1505 (1998).
Valiullin, R. & Khokhlov, A. Orientational ordering of linear n-Alkanes in silicon nanotubes. Phys. Rev. E 73, 051605-051604 (2006).
Petrov, O. V. & Furó, I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spectrosc. 54, 97-122 (2009).
Mitchell, J., Webber, J. B. W. & Strange, J. H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 461, 1-36 (2008).
Strange, J. H., Rahman, M. & Smith, E. G. Characterization of Porous Solids by Nmr. Phys. Rev. Lett. 71, 3589-3591 (1993).
Valiullin, R. In Handbook of Porous Silicon (ed Leigh, Canham) Ch. 44-1, 1-8 (Springer International Publishing, 2014).
Kondrashova, D. & Valiullin, R. Freezing and Melting Transitions under Mesoscalic Confinement: Application of the Kossel-Stranski Crystal-Growth Model. J. Phys. Chem. C 119, 4312-4323 (2015).
Kondrashova, D. & Valiullin, R. Improving structural analysis of disordered mesoporous materials using NMR cryoporometry. Microporous Mesoporous Mat. 178, 15-19 (2013).
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051-1069 (2015).
Landers, J., Gor, G. Y. & Neimark, A. V. Density functional theory methods for characterization of porous materials. Colloid Surf. A-Physicochem. Eng. Asp. 437, 3-32 (2013).
Melchionna, S., Ciccotti, G. & Holian, B. L. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533-544 (1993).
Hibbe, F. et al. Monitoring Molecular Mass Transfer in Cation-Free Nanoporous Host Crystals of Type AlPO-LTA. J. Am. Chem. Soc. 134, 7725-7732 (2012).
Hibbe, F. et al. The Nature of Surface Barriers on Nanoporous Solids Explored by Microimaging of Transient Guest Distributions. J. Am. Chem. Soc. 133, 2804-2807 (2011).