Sachidanandam R., Weissman D., Schmidt S.C., et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409(6822):928-933.
Frazer K.A., Ballinger D.G., Cox D.R., et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449(7164):851-861.
Pare G., Mehta S.R., Yusuf S., et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med 2010, 363(18):1704-1714.
Mayo C., Bertran-Alamillo J., Molina-Vila M.A., Gimenez-Capitan A., Costa C., Rosell R. Pharmacogenetics of EGFR in lung cancer: perspectives and clinical applications. Pharmacogenomics 2012, 13(7):789-802.
Whirl-Carrillo M., McDonagh E.M., Hebert J.M., et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012, 92(4):414-417.
Ng T., Chan M., Khor C.C., Ho H.K., Chan A. The genetic variants underlying breast cancer treatment-induced chronic and late toxicities: a systematic review. Cancer Treat Rev 2014, 40(10):1199-1214.
Vivenza D., Feola M., Garrone O., Monteverde M., Merlano M., Lo Nigro C. Role of the renin-angiotensin-aldosterone system and the glutathione S-transferase Mu, Pi and Theta gene polymorphisms in cardiotoxicity after anthracycline chemotherapy for breast carcinoma. Int J Biol Markers 2013, 28(4):e336-347.
Roca L., Dieras V., Roche H., et al. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial. Breast Cancer Res Treat 2013, 139(3):789-800.
Lemieux J., Diorio C., Cote M.A., et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res 2013, 33(6):2569-2576.
Beauclair S., Formento P., Fischel J.L., et al. Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol 2007, 18(8):1335-1341.
Yeh E.T., Bickford C.L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 2009, 53(24):2231-2247.
Peters E.J., Motsinger-Reif A., Havener T.M., et al. Pharmacogenomic characterization of US FDA-approved cytotoxic drugs. Pharmacogenomics 2011, 12(10):1407-1415.
Jensen B.C., McLeod H.L. Pharmacogenomics as a risk mitigation strategy for chemotherapeutic cardiotoxicity. Pharmacogenomics 2013, 14(2):205-213.
Menna P., Paz O.G., Chello M., Covino E., Salvatorelli E., Minotti G. Anthracycline cardiotoxicity. Expert Opin Drug Saf 2012, 11(Suppl. 1):S21-36.
Sawyer D.B., Peng X., Chen B., Pentassuglia L., Lim C.C. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection?. Prog Cardiovasc Dis 2010, 53(2):105-113.
Blanco J.G., Leisenring W.M., Gonzalez-Covarrubias V.M., et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008, 112(12):2789-2795.
Jamieson D., Boddy A.V. Pharmacogenetics of genes across the doxorubicin pathway. Expert Opin Drug Metab Toxicol 2011, 7(10):1201-1210.
Wang X., Liu W., Sun C.L., et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children's oncology group. J Clin Oncol 2014, 32(7):647-653.
Wojnowski L., Kulle B., Schirmer M., et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005, 112(24):3754-3762.
Rossi D., Rasi S., Franceschetti S., et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. Leukemia 2009, 23(6):1118-1126.
Semsei A.F., Erdelyi D.J., Ungvari I., et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol Int 2012, 36(1):79-86.
Visscher H., Ross C.J., Rassekh S.R., et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 2012, 30(13):1422-1428.
Visscher H., Ross C.J., Rassekh S.R., et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer 2013, 60(8):1375-1381.
Lubieniecka J.M., Graham J., Heffner D., et al. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase polymorphisms as a potential risk factor. Front Genet 2013, 4:231.
Triggiani M., Fragni M., Bonetti G., Pizzuto A., Papa I., Capellini S., et al. Abstract P3644. Genetic variants in antracicline biotransformation genes and risk of cardiotoxicity. Eur Heart J 2014, 35:A665.
Duan S., Bleibel W.K., Huang R.S., et al. Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res 2007, 67(11):5425-5433.
Kraft P., Hunter D.J. Genetic risk prediction-are we there yet?. N Engl J Med 2009, 360(17):1701-1703.
Visscher P.M., Brown M.A., McCarthy M.I., Yang J. Five years of GWAS discovery. Am J Hum Genet 2012, 90(1):7-24.
Wells Q.S., Mosley J.D., Van Driest S.L., Weeke P., Karnes J.H., Shaffer C.M., et al. Abstract 15509: genomwide-association identifies a novel locus for anthracycline cardiotoxicity. Circulation 2013, 128:A15509.