Article (Scientific journals)
H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction
Ding, Xuheng; Liao, Kai; Treu, Tommaso et al.
2017In Monthly Notices of the Royal Astronomical Society, 465, p. 4634-4649
Peer Reviewed verified by ORBi
 

Files


Full Text
1610.08504v1.pdf
Author preprint (3.22 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
black hole physics; galaxies: active; galaxies: evolution
Abstract :
[en] The empirical correlation between the mass of a supermassive black hole (M_BH) and its host galaxy properties is widely considered to be an evidence of their co-evolution. A powerful way to test the co-evolution scenario and learn about the feedback processes linking galaxies and nuclear activity is to measure these correlations as a function of redshift. Unfortunately, currently M_BH can only be estimated in active galaxies at cosmological distances. At these distances, bright active galactic nuclei (AGNs) can outshine the host galaxy, making it extremely difficult to measure the host's luminosity. Strongly lensed AGNs provide in principle a great opportunity to improve the sensitivity and accuracy of the host galaxy luminosity measurements as the host galaxy is magnified and more easily separated from the point source, provided the lens model is sufficiently accurate. In order to measure the M_BH-L correlation with strong lensing, it is necessary to ensure that the lens modelling is accurate, and that the host galaxy luminosity can be recovered to at least a precision and accuracy better than that of the typical M_BH measurement. We carry out extensive and realistic simulations of deep Hubble Space Telescope observations of lensed AGNs obtained by our collaboration. We show that the host galaxy luminosity can be recovered with better accuracy and precision than the typical uncertainty in M_BH(˜0.5 dex) for hosts as faint as 2-4 mag dimmer than the AGN itself. Our simulations will be used to estimate bias and uncertainties in the actual measurements to be presented in a future paper.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ding, Xuheng;  Department of Astronomy, Beijing Normal University, Beijing 100875, China ; Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Liao, Kai;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Treu, Tommaso;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Suyu, Sherry H.;  Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany ; Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan ; Physik-Department, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
Chen, Geoff C.-F.;  Department of Physics, University of California, Davis, CA 95616, USA ; Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan
Auger, Matthew W.;  Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Marshall, Philip J.;  Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
Agnello, Adriano;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA ; European Southern Observatories, Karl-Schwarzschild-Str 2, D-85748 Garching, Germany
Courbin, Frederic;  Laboratoire d'Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Nierenberg, Anna M.;  Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus OH 43210, USA
Rusu, Cristian E.;  Department of Physics, University of California, Davis, CA 95616, USA
Sluse, Dominique  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Sonnenfeld, Alessandro;  Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Wong, Kenneth C.;  National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan ; Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan)
More authors (4 more) Less
Language :
English
Title :
H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction
Publication date :
01 March 2017
Journal title :
Monthly Notices of the Royal Astronomical Society
ISSN :
0035-8711
eISSN :
1365-2966
Publisher :
Blackwell Publishing, Oxford, United Kingdom
Volume :
465
Pages :
4634-4649
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 02 February 2017

Statistics


Number of views
74 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
5
OpenCitations
 
27
OpenAlex citations
 
29

Bibliography


Similar publications



Contact ORBi