S. N. Afriat. 1973. On a system of inequalities in demand analysis: An extension of the classical method. Int. Econ. Rev. 14, 2, 460-472.
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall.
J. C. R. Alcantud, D. L. Matos, and C. R. Palmero. 2010. Goodness-of-fit in optimizing a consumer model. Math. Comput. Model. 52, 7-8, 1088-1094.
J. Andreoni and J. Miller. 2002. Giving according to garp: An experimental test of the consistency of preferences for altruism. Econometrica 70, 2, 737-753.
J. Apesteguia and M. A. Ballester. 2010. The computational complexity of rationalizing behavior. J. Math. Econ. 46, 356-363.
J. Apesteguia and M. Ballester. 2011. A measure of rationality and welfare. Working Paper, Universitat Pompeu Fabra, Departamento de Economía y Empresa, No. 1220.
R. Baron, J. Durieu, H. Haller, and P. Solal. 2004. Finding a Nash equilibrium in spatial games is an NP-complete problem. Econ. Theory 23, 445-454.
R. Baron, J. Durieu, H. Haller, R. Savani, and P. Solal. 2008. Good neighbors are hard to find: Computational complexity of network formation. Rev. Econ. Des. 12, 1-19.
F. Brandt and F. Fisher. 2008. Computing the minimal covering set. Math. Social Sci. 56, 254-268.
F. Brandt, F. Fisher, P. Harrenstein, and M. Mair. 2010. A computational analysis of the tournament equilibrium set. Social Choice Welfare 34, 597-609.
D. R. Burghart, P. W. Glimcher, and S. C. Lazzaro. 2013. An expected utility maximizer walks into a bar. J. Risk Uncertain. 46, 3, 215-246.
K. Cechlarova and J. Hajdukova. 2002. Computational complexity of stable partitions with B-preferences. Int. J. Game Theory 31, 353-364.
L. Cherchye, T. Demuynck, and B. De Rock. 2011. Testable implications of general equilibrium models: An integer programming approach. J. Math. Econ. 47, 564-575.
S. Choi, R. Fisman, D. Gale, and S. Kariv. 2007. Consistency and heterogeneity of individual behavior under uncertainty. Am. Econ. Rev. 97, 5, 1921-1938.
S. Choi, S. Kariv, W. Müller, and D. Silverman. 2011. Who is (More) rational? Tech. rep., National Bureau of Economic Research.
F. Chu and J. Halpern. 2001. On the NP-completeness of finding an optimal strategy in games with common payoffs. Int. J. Game Theory 30, 99-106.
V. Conitzer and T. Sandholm. 2008. New complexity results about Nash equilibria. Games Econ. Behav. 63, 621-641.
D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 3, 251-280.
J. C. Cox. 1997. On testing the utility hypothesis. Econ. J. 107, 443, 1054-1078.
M. Dean and D. Martin. 2010. How rational are your choice data? In Proceedings of the Conference on Revealed Preferences and Partial Identification.
R. Deb. 2010. An efficient nonparametric test of the collective household model. Working Paper, University of Toronto.
F. Echenique, S. Lee, and M. Shum. 2011. The money pump as a measure of revealed preference violations. J. Political Econ. 119, 6, 1201-1223.
Q. Fang, S. Zhu, M. Cai, and X. Deng. 2002. On computational complexity of membership test in flow games and linear production games. Int. J. Game Theory 31, 39-45.
P. Février and M. Visser. 2004. A study of consumer behavior using laboratory data. Exp. Econ. 7, 1, 93-114.
A. Galambos. 2009. The complexity of Nash rationalizability. Tech. rep., Lawrence University.
I. Gilboa and E. Zemel. 1989. Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav. 1, 80-93.
W. T. Harbaugh, K. Krause, and T. R. Berry. 2001. Garp for kids: On the development of rational choice behavior. Am. Econ. Rev. 91, 5, 1539-1545.
J. Håstad. 1999. Clique is hard to approximate withinn 1- ε. Acta Mathematica 182, 1, 105-142.
M. Houtman and J. Maks. 1985. Determining all maximal data subsets consistent with revealed preference. Kwantitatieve methoden 19, 89-104.
O. Hudry. 2009. A survey on the complexity of tournament solutions. Math. Social Sci. 57, 292-303.
S. Kalyanaraman and C. Umans. 2008. The complexity of rationalizing matchings. In Proceedings of the 19th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, Springer, Berlin, 171-182.
R. M. Karp. 1972. Reducibility among combinatorial problems. Complex. Comput. Comput. 40, 4, 85-103.
R. M. Karp. 1978. A characterization of the minimum cycle mean in a digraph. Discrete Math. 23, 3, 309-311.
A. Y. C. Koo. 1963. An empirical test of revealed preference theory. Econometrica 31, 4, 646-664.
A. Y. C. Koo. 1971. Revealed preference - A structural analysis. Econometrica 39, 1, 89-97.
A. Y. C. Koo and G. Hasenkamp. 1972. Structure of revealed preference: Some preliminary evidence. J. Political Econ. 80, 4, 724-744.
S. E. Landsburg. 1981. Taste change in the united kingdom, 1900-1955. J. Political Econ. 89, 1, 92-104.
M. E. Manser and R. J. McDonald. 1988. An analysis of substitution bias in measuring inflation, 1959-85. Econometrica 56, 4, 909-930.
A. Mattei. 2000. Full-scale real tests of consumer behavior using experimental data. J. Econ. Behav. Org. 43, 4, 487-497.
A. Mossin. 1972. A mean demand function and individual demand functions confronted with the weak and the strong axioms of revealed preference: An empirical test. Econometrica 40, 1, 177-192.
F. T. Nobibon, L. Cherchye, B. De Rock, J. Sabbe, and F. C. R. Spieksma. 2011. Heuristics for deciding collectively rational consumption behavior. Comput. Econ. 38, 173-204.
A. D. Procaccia and J. S. Rosenschein. 2008. On the complexity of achieving proportional representation. Social Choice Welfare 30, 353-362.
R. Sippel. 1997. An experiment on the pure theory of consumer's behaviour. Econ. J. 107, 1431-1444.
H. R. Varian. 1982. The nonparametric approach to demand analysis. Econometrica 50, 4, 945-973.
H. R. Varian. 1990. Goodness-of-fit in optimizing models. J. Econometrics 46, 1-2, 125-140.
H. R. Varian. 1993. Goodness-of-fit for revealed preference tests. Unpublished.
H. R. Varian. 2006. Revealed preference. In Samuelsonian Economics and the Twenty-First Century, 99-116.
G. J. Woeginger. 2003. Banks winners in tournaments are difficult to recognize. Social Choice Welfare 20, 523-528.
D. Zuckerman. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM, 681-690.