Blée E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 7:2002;315-322.
Feussner I., Wasternack C. The lipoxygenase pathway. Annu. Rev. Plant Biol. 53:2002;275-297.
Grechkin A.N. Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat. 68-69:2002;457-470.
Galliard T., Phillips D.R. The enzymic conversion of linoleic acid into 9-(Nona-1′,3′-dienoxy)non-8-enoic acid, a novel unsaturated ether derivative isolated from homogenates of Solanum tuberosum tubers. Biochem. J. 129:1972;743-753.
Caldelari D., Farmer E.E. A rapid assay for the coupled cell free generation of oxylipins. Phytochemistry. 47:1998;599-604.
Weber H., Chételat A., Caldelari D., Farmer E.E. Divinyl ether fatty acid synthesis in late-blight-diseased potato leaves. Plant Cell. 11:1999;485-493.
Grechkin A.N., Fazliev F.N., Mukhatarova L.S. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS Lett. 371:1995;159-162.
Hamberg M. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids. 33:1998;1061-1071.
Hamberg M. Biosynthesis of new divinyl ether oxilipins in Ranunculus plants. Lipids. 37:2002;427-433.
Proteau P.J., Gerwick W.H. Divinyl ethers and hydroxy fatty acids from three species of Laminaria. Lipids. 28:1993;783-787.
Jiang Z.D., Gerwick W.H. Novel oxilpins from the temperate red algae Polyneura latissima: evidence for an arachidonate 9(S) lipoxygenase. Lipids. 32:1997;231-235.
Blée E. Phytooxylipins and plant defense reactions. Prog. Lipid Res. 37:1998;33-72.
Weber H. Fatty acids derived signals in plants. Trends Plant Sci. 7:2002;217-224.
Göbel C., Feussner I., Schmidt A., Schell D., Sanchez-Serrano J., Hamberg M., Rosahl S. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. J. Biol. Chem. 276:2001;6267-6273.
Stumpe M., Kandzia R., Göbel C., Rosahl S., Feussner I. A pathogen inducible divinyl ether synthase (CYP 74D) from elicitor treated potato suspension cells. FEBS Lett. 507:2001;371-376.
Göbel C., Feussner I., Hamberg M., Rosahl S. Oxylipin profiling in pathogen infected potato leaves. Biochim. Biophys. Acta. 1584:2002;55-64.
Fukuchi-Mizutani M., Ishiguro K., Nakayam T., Utsunomiya Y., Tanaka Y., Kusumi T., Ueda T. Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci. 160:2000;129-137.
Panavas T., Rubinstein B. Oxidative events during programmed cell death in daylily (Hemerocallis hybrid) petals. Plant Sci. 133:1998;125-138.
Rouet-Mayer M.A., Bureau J.M., Laurière C. Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiol. 98:1992;971-978.
Grossman S., Leshem Y.Y. Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence. Plant Physiol. 43:1978;359-362.
Peterman T.K., Siedow J.N. Behavior of lipoxygenase during establishment, senescence, rejuvenation of soybean cotyledons. Plant Physiol. 78:1985;690-695.
Kar M., Feierabend J. Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence. Planta. 160:1984;385-391.
Fauconnier M.L., Rojas-Beltran J., Delcarte J., Dejaeghere F., Marlier M., du Jardin P. Lipoxygenase pathway and membrane permeability and composition during storage of potato tuber (Solanum tuberosum L. cv Bintje and Désirée) in different conditions. Plant Biol. 4:2002;77-85.
Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.E., Rajashekar C.B., Williams T.D., Wang X. Profiling membrane lipids in plant stress responses. J. Biol. Chem. 277:2002;31994-32002.
Fauconnier M.L., Perez A.G., Sanz C., Marlier M. Purification and characterisation of tomato leaf (Lycopersicon esculentum Mill.) hydroperoxide lyase. J. Agric. Food Chem. 45:1997;4232-4236.
Degousée N., Triantaphylides C., Montillet J.L. Involvement of oxidative processes in the signaling mechanisms leading to the activation of glyceollin synthesis in soybean (Glycine max). Plant Physiol. 104:1994;945-952.
Rusterucci C., Montillet J.L., Agnel J.P., Battesti C., Alonso B., Knoll A., Bessoule J.J., Etienne P., Suty L., Blein J.P., Triantaphylades C. Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryotogein on tobacco leaves. J. Biol. Chem. 274:2002;36446-36455.
Ellishèche P. Aspects physiologiques de la croissance et du developpement. Rouselle P., Robert Y., Crosnier J.C. La pomme de terre. 1996;72-124 INRA, Paris.
Fauconnier M.L., Delcarte J., Jaziri M., du Jardin P., Marlier M. Fatty acid hydroperoxide biotransformation by potato tuber cell-free extracts. J. Plant Physiol. 159:2002;1055-1060.
Berger S., Weichert H., Porzel A., Wasternack C., Kühn H., Feussner I. Enzymatic and non-enzymatic lipid peroxidation in leaf development. Biochim. Biophys. Acta. 55821:2001;1-11.
Mulliez E., Leblanc J.P., Girerd J.J., Rigaud M., Chottard J.C. 5-Lipoxygenase from potato tuber. Improved purification and physiological characteristics. Biochim. Biophys. Acta. 916:1987;13-23.
Corey E., Nagata R., Wright S. Biomimetic total synthesis of colneleic acid and its function as lipoxygenase inhibitor. Tetrahedron Lett. 28:1987;4917-4920.
Vancanneyt G., Sanz C., Farmaki T., Paneque M., Ortego F., Castanera P., Sanchez-Serrano J. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Plant Biol. 98:2001;8139-8144.
Galliard T., Wardale D.A., Matthew J.A. The enzymic and non-enzymic degradation of colneleic acid an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers. Biochem. J. 138:1974;23-31.
Zabrouskov V., Knowles N.R. Changes in lipid molecular species and sterols of microsomal membranes during aging of potato (Solanum tuberosum L.) seed-tubers. Lipids. 37:2002;309-315.
Holk A., Rietz S., Zahn M., Quader H., Scherer G.F.E. Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in signal transduction. Plant Physiol. 130:2002;90-101.
Verleij A.J., DeMaagd R., Leunissen-Bijvelt J., DeKruijff B. Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing membranes. Biochim. Biophys. Acta. 684:1982;255-262.
Cullis P.R., DeKruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 559:1979;399-420.