Abstract :
[en] Metrology in diluted systems for space applications is one of the most important technology research fields that in recent years have raised increasing interest. Many applications of astronomical observation techniques, as coronography and interferometry get great benefit when moved in space and the employment of diluted systems represents a milestone to step-over in astronomical research. In this work, we present the Optical Position Sensors Emitter (OPSE) metrological sub-system on-board of the PROBA3. PROBA3 is an ESA technology mission that will test in-orbit many metrology techniques for the maintenance of a Formation Flying with two satellites, in this case an occulter and a main satellite housing a coronagraph named ASPIICS, kept at an average inter-distance of 144m. The scientific task is the observation of the Sun’s Corona at high spatial and temporal resolution down to 1.08R⊙. The OPSE will monitor the relative position of the two satellites and consists of 3 emitters positioned on the rear surface of the occulter, that will be observed by the coronagraph itself. A Centre of Gravity (CoG) algorithm is used to monitor the emitter’s PSF at the focal plane of the Coronagraph retrieving the Occulter position with respect to the main spacecraft. The 3 location target accuracy is 300m for lateral movement and 21cm for longitudinal movements. A description of the characterization tests on the OPSE LED sources, and of the design for a laboratory set-up for on ground testing is given with a preliminary assessment of the performances expected from the OPSE images centroiding algorithm.
Scopus citations®
without self-citations
0