[en] The Miocene is a relatively recent epoch of the Earth's history with warmer climate than today, particularly during the middle Miocene Climatic Optimum (MMCO, approximately 17–15 Ma). Although the cause of the warming is probably not only attributable to CO2, but also to changes in orography and configuration of ocean gateways, this time interval represents an ideal case study to test the ability of climate models to simulate warm climates comparable to those that the Earth may experience in the near future. However, even with higher than present-day CO2 concentrations, the MMCO warming inferred from terrestrial proxy data has been difficult to reproduce in climate models.
Since fossil flora do not provide direct information on climate, but on flora and vegetation, climate model results are generally compared to climate reconstructions obtained from the fossil flora. In this study, we apply an alternative method by simulating palaeovegetation from the outputs of the climate model, using a dynamic vegetation model. Model vegetation reconstruction can then be compared to the vegetation cover indicated by the fossil flora record at the various localities, provided that a common classification of plant functional types (PFTs) is used for the data and the model. Here, we reconstruct the vegetation of the middle Miocene with the global dynamic vegetation model CARAIB, using the climatologies derived from five atmospheric general circulation models. The reliability of the simulations is examined on a presence/absence basis of PFTs by comparison of vegetation reconstructions to palaeoflora data recorded in the Northern Hemisphere and the Tropics.
This comparison provides an overall agreement around 60% between model and data, when all sites and tree types are considered. Three model simulations out of five show to be better at predicting the absence than the presence. The presence of warm-temperate mixed forests in the middle latitudes, dominated by broadleaved deciduous warm temperate and subtropical trees is generally well reproduced in CARAIB simulations. However, poor agreement is obtained for the presence of tropical PFTs out of the Tropics and for warm PFTs at latitudes northward of 50°N, where climate models remain too cold to produce assemblages of trees consistent with the data. Nevertheless, the model–data comparison performed here highlights several mismatches that could result not only from missing feedbacks in the climate simulations, but also from the data. The results of the likelihood analysis on presence/absence of PFTs illustrate the uncertainties in the PFT classification of the Neogene floral records. The coexistence of some PFTs in the palaeovegetation data is impossible to reproduce in the vegetation model simulations because of the climatic definition of the modern PFTs. This result indicates either a bias in the identification of modern analogues for fossil plant taxa, or a possible evolution of environmental requirements of certain plants.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Henrot, Alexandra-Jane ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Utescher, Torsten
Erdei, Boglarka
Dury, Marie ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Hamon, Noémie
Ramstein, Gilles
Krapp, Mario
Herold, Nicholas
Goldner, Aaron
Favre, Eric
Munhoven, Guy ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
François, Louis ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Middle Miocene climate and vegetation models and their validation with proxy data
Akgün, F., Kayseri, M., Akkiraz, M., Palaeoclimatic evolution and vegetational changes during the late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 56–90.
Axelrod, D., The middle Miocene Pyramid flora of western Nevada. Geol. Sci. Univ. Calif. Publ. 137 (1992), 1–5.
Bice, K., Scotese, C., Seidov, D., Barron, E., Quantifying the role of geographic changes in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Earth Planet. Sci. Lett. 161 (2000), 295–310.
Bitz, C., Shell, K., Gent, P., Bailey, D., Danabasoglu, G., Armour, K., Holland, M., Kiehl, J., Climate sensitivity of the Community Climate System Model version 4. J. Clim. 25 (2012), 3053–3070.
Böhme, M., Winklhofer, M., Ilg, A., Miocene precipitation in Europe: temporal trends and spatial gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 212–218.
Boyden, J., Müller, R., Gurnis, M., Torsvik, T., Clark, J., Turner, M., Ivey-Law, H., Watson, R., Cannon, J., Next-generation plate-tectonic reconstructions using GPlates. Keller, G., Baru, C., (eds.) Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, 2011, Cambridge University Press, Cambridge, Ch, 95–114.
Brovkin, V., Raddatz, T., Reick, C., Claussen, M., Gayler, V., Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, 2009, L07405.
Bruch, A., Uhl, D., Mosbrugger, V., Miocene climate in Europe. Patterns and evolution: a first synthesis of NECLIME. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 1–7.
Bruch, A., Utescher, T., Mosbrugger, V., Members, N., Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 202–211.
Bruch, A., Utescher, T., Olivares, C.A., Dolakova, N., Ivanov, D., Mosbrugger, V., Middle and Late Miocene spatial temperature patterns and gradients in Europe—preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg 249 (2004), 15–27.
Butzin, M., Lohmann, G., Bickert, T., Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records. Paleoceanography, 26, 2011, PAI203.
Collins, W., Bitz, C., Blackmon, M., Bonan, G., Bretherton, C., Carton, J., Chang, P., Doney, S., Hack, J., Henderson, T., Kiehl, J., Large, W., McKenna, D., Santer, B., Smith, R., The Community Climate System Model Version 3 (CCSM3). J. Clim. 19:11 (2006), 2122–2143.
Demchuk, T., Moore, T., Palynofloral and organic characteristics of a Miocene bog-forest, Kalimantan, Indonesia. Org. Geochem. 20 (1993), 119–134.
Denk, T., Grimsson, F., Zetter, R., Simonarson, L., Cenozoic Floras of Iceland: 15 Million Years of Vegetation and Climate History in the Northern North Atlantic. Topics in Geobiology, 2011, Springer, Heidelberg, New York.
Djordjevic, D., Culafic, G., Vegetation succession during the Miocene period in the area of Berane–Police Basin. Nat. Monten. 9 (2010), 215–247.
Dury, M., Hambuckers, A., Warnant, P., Henrot, A.-J., Favre, E., Ouberdous, M., François, L., Response of the European forests to climate change: a modelling approach for the 21st century. iForest, 4, 2011, 82–99.
El Beialy, S., Mahmoud, M., Ali, S., Insights on the age, climate and environment of the Miocene Rudeis and Kareem formations, GS-78-1 well, Gulf of Suez, Egypt: a palynological approach. Rev. Esp. Micropaleontol. 37:2 (2005), 273–289.
Favre, E., François, L., Fluteau, F., Cheddadi, R., Thévenod, L., Suc, J.-P., Messinian vegetation maps of the Mediterranean region using models and interpolated pollen data. Geobios 40 (2007), 433–443.
Fernandez Marron, M., Hably, L., A new Miocene plant assemblage from Parla, Madrid basin, Spain. Rev. Paléobiol. 24:2 (2005), 647–656.
Forrest, M., Eronen, J., Utescher, T., Knorr, G., Stepanek, C., Lohmann, G., Hickler, T., Climate–vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene. Clim. Past 11 (2015), 1701–1732.
Foster, G., Lear, C., Rae, J., The evolution of pCO2, ice volume and climate during the Middle Miocene. Earth Planet. Sci. Lett. 341-344 (2012), 243–254.
Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., Lunkeit, F., The Planet Simulator: towards a user friendly model. Meteorol. Z. 14:3 (2005), 299–304.
Fraedrich, K., Jansen, H., Kirk, E., Lunkeit, F., The Planet Simulator: Green planet and desert world. Meteorol. Z. 14:3 (2005), 305–314.
Fraedrich, K., Kirk, E., Lunkeit, F., PUMA Portable University Model of the Atmosphere. Tech. Rep., 16, 1998, Meteorologisches Institut, Universität Hamburg, Hamburg.
François, L., Delire, C., Warnant, P., Munhoven, G., Modelling the glacial–interglacial changes in the continental biosphere. Glob. Planet. Chang. 16-17:1–4 (1998), 37–52.
François, L., Ghislain, L., Otto, D., Micheels, A., Late Miocene vegetation reconstruction with the CARAIB model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238 (2006), 302–320.
François, L., Goddéris, Y., Warnant, P., Ramstein, G., de Noblet, N., Lorenz, S., Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and Last Glacial Maximum times. Chem. Geol. 159:1–4 (1999), 163–189.
François, L., Utescher, T., Favre, E., Henrot, A.-J., Warnant, P., Micheels, A., Erdei, B., Suc, J.-P., Cheddadi, R., Mosbrugger, V., Modelling Late Miocene vegetation in Europe: results of the CARAIB model and comparison with palaeovegetation data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 359–378.
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H., Palhol, F., Singh, S., C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quat. Sci. Rev. 27 (2008), 1396–1409.
Gent, P., Danabasoglu, G., Donner, L., Holland, M., Hunke, E., Jayne, S., Lawrence, D., Neale, R., Rasch, P., Vertenstein, M., Worley, P., Yang, Z.-L., Zhang, M., The Community Climate System Model version 4. J. Clim. 24 (2012), 4973–4991.
Gérard, J.-C., Nemry, B., François, L., Warnant, P., The internal change in atmopsheric CO2: contribution of subtropical ecosystems?. Geophys. Res. Lett. 26:2 (1999), 243–246.
Goldner, A., Herold, N., Huber, M., The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Clim. Past 10 (2014), 523–536.
Graham, A., Late Cretaceous and Cenozoic History of North American Vegetation. 1999, Oxford University Press, New York, USA.
Greenop, R., Foster, G., Wilson, P., Lear, C., Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29 (2014), 845–853.
Guo, Z., Sun, B., Zhang, Z., Peng, S., Xiao, G., Ge, J., Hao, Q., Qiao, Y., Liang, M., Liu, J., Yin, Q., Wei, J., A major reorganization of Asian climate by the early Miocene. Clim. Past 4 (2008), 153–174.
Hamon, N., Sepulchre, P., Donnadieu, Y., Henrot, A.-J., François, L., Jaeger, J.-J., Ramstein, G., Growth of subtropical forests in Miocene Europe: the roles of carbon dioxide and Antarctic ice volume. Geology 40 (2012), 567–570.
Haywood, A., Dowsett, H., Otto-Bliesner, B., Chandler, M., Dolan, A., Hill, D., Lunt, D., Robinson, M., Rosenbloom, N., Salzmann, U., Sohl, L., Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geosci. Model Dev. 3 (2010), 227–242.
Henrot, A.-J., François, L., Favre, E., Butzin, M., Ouberdous, M., Munhoven, G., Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Clim. Past 6 (2010), 675–694.
Herold, N., Huber, M., Müller, R., Seton, M., Modeling the Miocene climatic optimum: ocean circulation. Paleoceanography, 27, 2012, PA1209.
Herold, N., Müller, R., Seton, M., Comparing early to middle Miocene terrestrial climate simulations with geological data. Geosphere 6:6 (2010), 952–961.
Herold, N., Seton, M., Müller, R.D., You, Y., Huber, M., Middle Miocene tectonic boundary conditions for use in climate models. Geochem. Geophys. Geosyst., 9(10), 2008, Q10009.
Herold, N., You, Y., Müller, R.D., Seton, M., Climate model sensitivity to change in Miocene paleotopography. Aust. J. Earth Sci. 56 (2009), 1049–1059.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., le Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., Lott, F., The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27 (2006), 787–813.
Hubert, B., François, L., Warnant, P., Strivay, D., Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. J. Hydrol. 212-213:1–4 (1998), 318–334.
Hunke, E., Lipscomb, W., CICE: the Los Alamos Sea Ice Model Users Manual, Version 4. Tech. rep., 2008, Los Alamos National Laboratory.
Ina, H., Miocene vegetational and climatic history of the Setouchi Gelogic Province, Japan. J. Earth Planet. Sci. 39 (1992), 47–82.
Jalas, J., Suominen, J., Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 1-11, 1972-1994, The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, FI.
Jalas, J., Suominen, J., Lampinen, R., Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 11, 1996, The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, FI.
Jalas, J., Suominen, J., Lampinen, R., Kurtto, A., Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 12, 1999, The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, FI.
Jimenez-Moreno, G., Suc, J.-P., Middle Miocene latitudinal climatic gradient in Western Europe: evidence from pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 208–225.
Khan, M., Spicer, R., Bera, S., Ghosh, R., Yang, J., Spicer, T., Guo, S.-X., Su, T., Jacques, F., Grote, P., Miocene to Pleistocene floras and climate of the Eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet. Glob. Planet. Chang. 113 (2014), 1–10.
Knorr, G., Lohmann, G., Climate warming during antarctic ice sheet expansion at the middle Miocene transition. Nat. Geosci. 7 (2014), 376–381.
Krapp, M., Jungclaus, J., The Middle Miocene climate as modelled in an atmosphere–ocean–biosphere model. Clim. Past 7 (2011), 1169–1188.
Krapp, M., Jungclaus, J., Pacific variability under present-day and Middle Miocene boundary conditions. Clim. Dyn. 44 (2015), 2609–2621.
Kürschner, W., Kvacek, Z., Dilcher, D., The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl. Acad. Sci. 105:2 (2008), 449–453.
LaRiviere, J., Ravelo, A., Crimmins, A., Dekens, P., Ford, H., Lyle, M., Wara, M., Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486 (2012), 97–100.
Larsson, L., Dybkjaer, K., Rasmussen, E., Piasecki, S., Utescher, T., Vajda, V., Miocene climate evolution of northern Europe: a palynological investigation from Denmark. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309 (2011), 161–175.
Laurent, J.-M., François, L., Bar-Hen, A., Bel, L., Cheddadi, R., European bioclimatic affinity groups: data–model comparisons. Glob. Planet. Chang. 61 (2008), 28–40.
Lawrence, L., Oleson, K., Flanner, M., Fletcher, C., Lawrence, P., Levis, S., Swenson, S., Bonan, G., The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. J. Clim. 25 (2012), 2240–2260.
Lewis, A., Marchant, D., Ashworth, A., Hedenäs, L., Hemming, S., Johnson, J., Leng, M., Machlus, M., Newton, A., Raine, J., Willenbring, J., Williams, M., Wolfe, A., Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl. Acad. Sci. 105:31 (2008), 10676–10680.
Liu, Y.-S., Utescher, T., Zhou, Z., Sun, B., The evolution of Miocene climates in North China: preliminary results of quantitative reconstructions from plant fossil records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 308–317.
Mandaokar, B., Mukherjee, D., Palynological investigation of early Miocene sediments exposed at Panruti, Cuddalore District, Tamil Nadu, India. Int. J. Geol. Earth Environ. Sci. 2:3 (2012), 157–175.
Marsland, S., Haak, H., Jungclaus, J., Latif, M., Röske, F., The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5 (2003), 91–127.
Mehrotra, R., Shukla, A., Srivastava, G., Tiwari, R., Miocene Megaflora of Peninsular India: Present Status and Future Prospect. 5, 2014, Special Publication of the Paleontological Society of India, 145–160.
Méon, H., Tayech, B., Etudes palynologiques dans le Miocène du Cap Bon (Tunisie). Essai d'établissement d'écozones et de reconstitution palinotopographique Géobios, 19, 1986, 601–626.
Micheels, A., Eronen, J., Mosbrugger, V., The Late Miocene climate response to a modern Sahara desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 67 (2009), 193–204.
Mohr, B., The development of Antarctic fern floras during the Tertiary, and palaeoclimatic and palaeobiogeographic implications. Palaeontogr. Abt. B 259 (2001), 167–208.
Mosbrugger, V., Utescher, T., The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134 (1997), 61–86.
Mosbrugger, V., Utescher, T., 2015. The Palaeoflora database. www.Palaeoflora.de.
Mosbrugger, V., Utescher, T., Dilcher, D.L., Cenozoic continental climatic evolution of Central Europe. PNAS 102:42 (2005), 14964–14969.
Müller, R., Sdrolias, M., Gaina, C., Roest, W., Age, spreading rates and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst., 9, 2008, Q04006.
Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:5868 (2008), 1357–1362.
Nemry, B., François, L.M., Warnant, P., Robinet, F., Gérard, J.-C., The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic vegetation model. J. Geophys. Res. 101:D3 (1996), 7111–7125.
New, M., Lister, D., Hulme, M., Makin, I., A high-resolution data set of surface climate over global land areas. Clim. Res. 21 (2002), 1–25.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., François, L., Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Glob. Planet. Chang. 33:2–3 (2002), 117–138.
Oyama, T., Miocene fossil plants from Kamikanazawa, Daigo-machi, Ibaraki Prefecture. Japan Science Reports of the Tohoku University, 4, 1960, 488–490.
Pagani, M., Zhonghui, L., LaRiviere, J., Ravelo, A.C., High earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3 (2010), 27–30.
Pearson, P., Palmer, M., Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:6797 (2000), 695–699.
Popova, S., Utescher, T., Gromyko, D., Bruch, A., Mosbrugger, V., Palaeoclimate evolution in Siberia and the Russian Far East from the Oligocene to Pliocene — evidence from fruit and seed floras. Turk. J. Earth Sci. 21 (2012), 315–334.
Popova, S., Utescher, T., Gromyko, D., Mosbrugger, V., Herzog, E., François, L., Vegetation change in Siberia and the Northeast of Russia during the Cenozoic cooling: a study based on diversity of plant functional types. PALAIOS 28 (2013), 418–432.
Pound, M., Haywood, A., Salzmann, U., Riding, J., Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci. Rev. 112:42 (2012), 1–22.
Raddatz, T., Reick, C., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K., Wetzel, P., Jungclaus, J., Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?. Clim. Dyn. 29 (2007), 565–574.
Retallack, G., Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African graslands. Paleobiology 18:4 (1991), 383–400.
Retallack, G., Cenozoic paleoclimate on land in North America. J. Geol. 115 (2007), 271–294.
Retallack, G., Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281:2 (2009), 57–65.
Retallack, G., Kirby, M., Middle Miocene global change and paleogeography of Panama. PALAIOS 22:6 (2007), 667–679.
Roeckner, E., Arpe, K., Bengtsson, L., Simulation of present-day climate with the ECHAM model: impact of model physics and resolution. Tech. rep., 93, 1992, Max-Planck Institute, Hamburg, Germany.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., Tompkins, A., The atmospheric general circulation model ECHAM5. part I: model description. Tech. Rep., 349, 2003, Max-Planck-Institut für Meteorologie, Hamburg (11).
Sachse, M., Mohr, B., An upper Miocene macro- and microflora from southern Crete (Greece), and its palaeoclimatic interpretation — preliminary results. N. Jb. Geol. Paläont. 200 (1996), 149–182.
Salzmann, U., Haywood, A., Lunt, D., Valdes, P., Hill, D., A new global biome reconstruction and data–model comparison for the middle Pliocene. Glob. Ecol. Biogeogr. 17 (2008), 432–447.
Senut, B., Pickford, M., Ségalen, L., Neogene desertification of Africa. Compt. Rendus Geosci. 341 (2009), 591–602.
Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J.-C., Jaramillo, C., Bras, J.L., Martin, E., Montes, C., Waite, A., Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes. Paleoceanography 29:3 (2014), 176–189.
Shevenell, A., Kennett, J., Lea, D., Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem. Geophys. Geosyst., 9(2), 2008, Q02006.
Spicer, R., Bera, S., Bera, S.D., Spicer, T., Srivastava, G., Mehrotra, R., Mehrotra, N., Yang, J., Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302 (2011), 381–395.
Spicer, R., Valdes, P., Spicer, T., Craggs, H., Srivastava, G., Mehrotra, R., Yang, J., New development in CLAMP: calibration using global gridded meteorological data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283 (2009), 91–98.
Sun, B.-N., Wu, J.-Y., Liu, Y.-S., Ding, S.-T., Li, X.-C., Xie, S.-P., Yan, D.-F., Lin, Z.-C., Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 328–336.
Syabryaj, S., Utescher, T., Molchanoff, S., Bruch, A., Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 153–168.
Taggart, R., Ralph, E., Additions to the Miocene Sucker Creek flora of Oregon and Idaho, taggart. Am. J. Bot. 60:9 (1973), 923–928.
Tobis, M., Schafer, C., Foster, I., Jacob, R., Anderson, J., FOAM: Expanding the Horizons of Climate Modeling. Proceedings of SuperComputing, 1997, 97.
Tong, J., You, Y., Müller, R., Seton, M., Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene. Glob. Planet. Chang. 67 (2009), 129–140.
Utescher, T., Böhme, M., Mosbrugger, V., The Neogene of Eurasia: spatial gradients and temporal trends — the second synthesis of NECLIME. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 196–201.
Utescher, T., Bruch, A., Erdei, B., François, L., Ivanov, D., Jacques, F., Kern, A., Liu, Y.-S., Mosbrugger, V., Spicer, R., The coexistence approach–theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410 (2014), 58–73.
Utescher, T., Bruch, A., Micheels, A., Mosbrugger, V., Popova, S., Cenozoic climate gradients in Eurasia? A palaeo-perspective on future climate change?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 351–358.
Utescher, T., Djordjevic-Milutinovic, D., Bruch, A., Mosbrugger, V., Climate and vegetation changes in Serbia during the last 30 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 141–152.
Utescher, T., Erdei, B., François, L., Mosbrugger, V., Tree diversity in the Miocene forests of Western Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253 (2007), 226–250.
Utescher, T., Erdei, B., Hably, L., Mosbrugger, V., Late Miocene vegetation of the Pannonian Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467 (2017), 131–148.
Valcke, S., OASIS3 User Guide (prism 2–5). Tech. Rep. TR/CMGC/06/73, CERFACS, Toulouse, France, 2006.
Valle, M., Gavilan, G.A., Carballo, M.R.R., Analyse palynologique préliminaire du Miocène dans la dépression du Duero (aire de Beldorado, Burgos, España). Geobios 28 (1995), 407–412.
Van der Kaars, W., Palynological aspects of Site 767 in the Celebes Sea. Proceedings of the Ocean Drilling Program, Scientific Results 124, 1991.
Von der Heydt, A., Dijkstra, H., The effect of ocean gateways on ocean circulation patterns in the Cenozoic. Glob. Planet. Chang. 62 (2008), 132–146.
Wahrhaftig, C., Wolfe, J., Leopold, E., Lanphere, M., The Coal-bearing Group in the Nenana Coal Field, Alaska. U.S. Geological Survey Bulletin 1274-D, 1969.
Warnant, P., Modélisation du cycle du carbone dans la biosphère continentale à l'échelle globale. Ph.D. thesis, 1999, Université de Liège, Liège (In French.).
Warnant, P., François, L.M., Strivay, D., Gérard, J.-C., CARAIB: a global model of terrestrial biological productivity. Glob. Biogeochem. Cycles 8:3 (1994), 255–270.
White, J., Ager, T., Adam, D., Leopold, E., Liu, G., Jette, H., Schweger, C., An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 130 (1997), 293–306.
Williams, C., Mendell, E., Murphy, J., Court, W., Johnson, A., Richter, S., Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261 (2008), 160–176.
Williams, S., Müller, R., Landgrebe, T., Whittaker, J., An open-source software environment for visualizing and refining plate tectonic reconstructions using high resolution geological and geophysical data sets. GSA Today 22:4/5 (2012), 4–9.
Wise, R., Oliver, H., Reprocessing of marine multichannel seismic-reflection profile Line 12, Cape Hatteras, North Carolina, to Shell Mohawk well, Canada. U.S. Geological Survey Open-File Report 88-51, 1987.
Wolfe, J., Miocene floras from Fingerrock Wash, southwestern Nevada. U.S. Geol. Surv. Prof. Pap. 454 (1964), 1–36.
Wolfe, J., Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia: analysis of temperature data from more than 400 stations in Eastern Asia. U.S. Geol. Surv. Prof. Pap. 32 (1979), 1–37.
Wolfe, J., Distribution of major vegetational types during the Tertiary. Geophys. Monogr. 32 (1985), 357–375.
Wolfe, J., Tanai, T., The Miocene Seldovia Point flora from the Kenai Group, Alaska. U.S. Geol. Surv. Prof. Pap. 1105 (1980), 1–52.
Yao, Y.-F., Bruch, A., Mosbrugger, V., Li, C.-S., Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304 (2011), 291–307.
You, Y., Huber, M., Müller, R.D., Poulsen, C.J., Ribbe, J., Simulation of the Middle Miocene Climate Optimum. Geophys. Res. Lett., 36(4), 2009, L04702.
Zachos, J., Dickens, G., Zeebe, R., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:17 (2008), 279–283.
Zhang, Y., Pagani, M., Bohaty, S., DeConto, R., A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. London, Ser. A, 371, 2013 (20130096).
Zhang, Z., Nisancioglu, K., Flatøy, F., Bentsen, M., Bethke, I., Wang, H., Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Clim. Past 7 (2011), 801–813.
Zhang, Z., Wang, H., Guo, Z., Jiang, D., Impact of topography and land-sea distribution on East Asian paleoenvironmental patterns. Adv. Atmos. Sci. 23 (2006), 258–266.