[en] A number of papers attempt to explain the positron anomaly in cosmic rays, observed by PAMELA and AMS-02, in terms of dark matter (DM) decays or annihilations. However, the recent progress in cosmic gamma-ray studies challenges these attempts. Indeed, as we show, any rational DM model explaining the positron anomaly abundantly produces final state radiation and Inverse Compton gamma rays, which inevitably leads to a contradiction with Fermi-LAT isotropic diffuse gamma-ray background measurements. Furthermore, the Fermi-LAT observation of Milky Way dwarf satellites, supposed to be rich in DM, revealed no significant signal in gamma rays. We propose a generic approach in which the major contribution to cosmic rays comes from the dark matter disc and prove that the tension between the DM origin of the positron anomaly and the cosmic gamma-ray observations can be relieved. We consider both a simple model, in which DM decay/annihilate into charged leptons, and a model-independent minimal case of particle production, and we estimate the optimal thickness of DM disk. Possible mechanisms of formation and its properties are briefly discussed.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Belotsky, Konstantin ✱; National Research Nuclear University MEPhI > Department of Elementary Particle Physics
Budaev, Ruslan ✱; National Research Nuclear University MEPhI > Department of Elementary Particle Physics
Kirillov, Alexander ✱; Yaroslavl State P.G. Demidov University > Department of Theoretical Physics
Laletin, Maxim ✱; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?
PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
AMS collaboration, M. Aguilar et al., First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].
D. Hooper, P. Blasi and P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, JCAP 01 (2009) 025 [arXiv:0810.1527] [INSPIRE].
M. Di Mauro, F. Donato, N. Fornengo, R. Lineros and A. Vittino, Interpretation of AMS-02 electrons and positrons data, JCAP 04 (2014) 006 [arXiv:1402.0321] [INSPIRE].
Y. Bai, M. Carena and J. Lykken, The PAMELA excess from neutralino annihilation in the NMSSM, Phys. Rev. D 80 (2009) 055004 [arXiv:0905.2964] [INSPIRE].
C.-H. Chen, C.-W. Chiang and T. Nomura, Dark matter for excess of AMS-02 positrons and antiprotons, Phys. Lett. B 747 (2015) 495 [arXiv:1504.07848] [INSPIRE].
M. Cirelli, Status of indirect (and direct) dark matter searches, arXiv:1511.02031 [INSPIRE].
FERMI-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
FERMI-LAT collaboration, M. Ackermann et al., The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J. 799 (2015) 86 [arXiv:1410.3696] [INSPIRE].
FERMI-LAT collaboration, M. Di Mauro, The origin of the Fermi-LAT γ-ray background, arXiv:1601.04323 [INSPIRE].
P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].
P.S.B. Dev, D.K. Ghosh, N. Okada and I. Saha, Neutrino mass and dark matter in light of recent AMS-02 results, Phys. Rev. D 89 (2014) 095001 [arXiv:1307.6204] [INSPIRE].
M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on decaying dark matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].
S. Ando and K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, JCAP 05 (2015) 024 [arXiv:1502.02007] [INSPIRE].
W. Liu, X.-J. Bi, S.-J. Lin and P.-F. Yin, Constraints on dark matter annihilation/decay from the isotropic gamma-ray background, arXiv:1602.01012 [INSPIRE].
P.M.W. Kalberla, L. Dedes, J. Kerp and U. Haud, Dark matter in the Milky Way, II. The HI gas distribution as a tracer of the gravitational potential, Astron. Astrophys. 469 (2007) 511 [arXiv:0704.3925] [INSPIRE].
L. Randall and J. Scholtz, Dissipative dark matter and the Andromeda plane of satellites, JCAP 09 (2015) 057 [arXiv:1412.1839] [INSPIRE].
J.I. Read, G. Lake, O. Agertz and V.P. Debattista, Thin, thick and dark discs in ΛCDM, Mon. Not. Roy. Astron. Soc. 389 (2008) 1041 [arXiv:0803.2714] [INSPIRE].
C.W. Purcell, J.S. Bullock and M. Kaplinghat, The dark disk of the Milky Way, Astrophys. J. 703 (2009) 2275 [arXiv:0906.5348] [INSPIRE].
M. Kuhlen, A. Pillepich, J. Guedes and P. Madau, The distribution of dark matter in the Milky Way's disk, Astrophys. J. 784 (2014) 161 [arXiv:1308.1703] [INSPIRE].
C.M. Bidin, G. Carraro, R.A. Mendez and W.F. van Altena, No evidence for a dark matter disk within 4 kpc from the galactic plane, Astrophys. J. 724 (2010) L122 [arXiv:1011.1289] [INSPIRE].
G.R. Ruchti et al., The Gaia-ESO survey: a quiescent Milky Way with no significant dark/stellar accreted disc, Mon. Not. Roy. Astron. Soc. 450 (2015) 2874 [arXiv:1504.02481] [INSPIRE].
O. Bienaymé et al., Weighing the local dark matter with RAVE red clump stars, Astron. Astrophys. 571 (2014) A92 [arXiv:1406.6896] [INSPIRE].
Q. Xia et al., Determining the local dark matter density with LAMOST data, Mon. Not. Roy. Astron. Soc. 458 (2016) 3839 [arXiv:1510.06810] [INSPIRE].
E.D. Kramer and L. Randall, Updated kinematic constraints on a dark disk, Astrophys. J. 824 (2016) 116 [arXiv:1604.01407] [INSPIRE].
I. Cholis and L. Goodenough, Consequences of a dark disk for the Fermi and PAMELA signals in theories with a Sommerfeld enhancement, JCAP 09 (2010) 010 [arXiv:1006.2089] [INSPIRE].
C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].
A. Hektor, M. Raidal, A. Strumia and E. Tempel, The cosmic-ray positron excess from a local dark matter over-density, Phys. Lett. B 728 (2014) 58 [arXiv:1307.2561] [INSPIRE].
V.V. Alekseev et al., High-energy cosmic antiparticle excess vs. isotropic gamma-ray background problem in decaying dark matter universe, J. Phys. Conf. Ser. 675 (2016) 012023 [INSPIRE].
V.V. Alekseev et al., On a possible solution to gamma-ray overabundance arising in dark matter explanation of cosmic antiparticle excess, J. Phys. Conf. Ser. 675 (2016) 012026 [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051
[Erratum M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
The GALPROP code for cosmic-ray transport and diffuse emission production webpage, http://galprop.stanford.edu/.
H.-B. Jin, Y.-L. Wu and Y.-F. Zhou, Cosmic ray propagation and dark matter in light of the latest AMS-02 data, JCAP 09 (2015) 049 [arXiv:1410.0171] [INSPIRE].
A. Ibarra, D. Tran and C. Weniger, Decaying dark matter in light of the PAMELA and Fermi LAT data, JCAP 01 (2010) 009 [arXiv:0906.1571] [INSPIRE].
H. Gast and S. Schael, Charge-dependent solar modulation in light of the recent PAMELA data, in Proceedings of 31st ICRC, Łódź Poland (2009).
AMS collaboration, L. Accardo et al., High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
PLANCK collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
M. Cirelli and P. Panci, Inverse Compton constraints on the dark matter e+e- excesses, Nucl. Phys. B 821 (2009) 399 [arXiv:0904.3830] [INSPIRE].
J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark matter signals from cascade annihilations, JCAP 05 (2009) 016 [arXiv:0901.2926] [INSPIRE].
S. Ravindranath et al., Evolution of disk galaxies in the GOODS-south field: number densities and size distribution, Astrophys. J. 604 (2004) L9 [astro-ph/0401483] [INSPIRE].
Virtual observatory on the net generating images of any part of the sky at wavelengths in all regimes from radio to gamma-ray webpage, http://skyview.gsfc.nasa.gov/.
FERMI-LAT collaboration, M. Ajello et al., Fermi-LAT observations of high-energy γ-ray emission toward the galactic center, Astrophys. J. 819 (2016) 44 [arXiv:1511.02938] [INSPIRE].
K.M. Belotsky, E.A. Esipova and A.A. Kirillov, On the classical description of the recombination of dark matter particles with a Coulomb-like interaction, Phys. Lett. B 761 (2016) 81 [arXiv:1506.03094] [INSPIRE].
J. Fan, A. Katz, L. Randall and M. Reece, Double-disk dark matter, Phys. Dark Univ. 2 (2013) 139 [arXiv:1303.1521] [INSPIRE].
R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev. D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].