© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
All documents in ORBi are protected by a user license.
Abstract :
[en] In ground-based astronomy, aberrations due to structural vibrations, such as piston, limit the achievable resolution and cannot be corrected using adaptive optics (AO) for large telescopes. We present a model-free strategy to estimate and compensate piston aberrations due to the vibrations of optical components using accelerometer disturbance feed forward, eventually allowing the use of fainter guide stars both for the fringe detector and in the AO loop. Because the correction performance is very sensitive to signal delays, we present a strategy to add a delay compensation to the developed disturbance estimator, which can, in principle, be applied to many other applications outside of astronomy that lack observer performance due to a measurement delay or need a prediction to compensate for input delays. The ability to estimate vibration disturbances in the critical frequency range of 8-60 Hz is demonstrated with on sky data from the Large Binocular Telescope (LBT) Interferometer, an interferometer at the LBT. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 3 (rms), which is significantly better than any currently commissioned system.
Scopus citations®
without self-citations
22