[en] The mononuclear phagocyte system is composed of monocytes, macrophages and dendritic cells and has crucial roles in inflammation, autoimmunity, infection, cancer, organ transplantation and in maintaining organismal homeostasis. Interleukin-34 (IL-34) and macrophage colony stimulating factor (MCSF), both signalling through the MCSF receptor, regulate the mononuclear phagocyte system. A single IL-34 and MCSF gene are present in tetrapods. Two types of MCSF exist in teleost fish which is resulted from teleost-wide whole genome duplication. In this report, we first identified and sequence analysed six IL-34 genes in five teleost fish, rainbow trout, fugu, Atlantic salmon, catfish and zebrafish. The fish IL-34 molecules had a higher identity within fish group but low identities to IL-34s from birds (27.2-33.8%) and mammals (22.2-31.4%). However, they grouped with tetrapod IL-34 molecules in phylogenetic tree analysis, had a similar 7 exon/6 intron gene organisation, and genes in the IL-34 loci were syntenically conserved. In addition, the regions of the four main helices, along with a critical N-glycosylation site were well conserved. Taken together these data suggest that the teleost IL-34 genes described in this report are orthologues of tetrapod IL-34. Comparative expression study of the three trout MCSFR ligands revealed that IL-34, MCSF1 and MCSF2 are differentially expressed in tissues and cell lines. The expression of MCSF1 and MCSF2 showed great variance in different tissues and cell lines, suggesting a role in the differentiation and maintenance of specific macrophage lineages in specific locations. The relatively high levels of IL-34 expression across different tissues suggests a homeostatic role of IL-34 for the macrophage lineage in fish. One striking observation in the present study was the lack of induction of MCSF1 and MCSF2 expression but the quick induction of IL-34 expression by PAMPs and inflammatory cytokines in cell lines and primary head kidney macrophages in rainbow trout. In a parasitic proliferative kidney disease (PKD) model, the expression of IL-34 but not the dominant MCSF2 was affected by PKD, suggesting an involvement of macrophage function in this disease model. Thus IL-34 expression is sensitive to inflammatory stimuli and may regulate macrophage biology once up-regulated.
Almolda B., Gonzalez B., Castellano B. Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Frontiers in Bioscience 2011, 16:1157-1171.
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. Journal of Molecular Biology 1990, 215:403-410.
Baud'huin M., Renault R., Charrier C., Riet A., Moreau A., Brion R., Gouin F., Duplomb L., Heymann D. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. Journal of Pathology 2010, 221:77-86.
Bettge K., Segner H., Burki R., Schmidt-Posthaus H., Wahli T. Proliferative kidney disease (PKD) of rainbow trout: temperature- and time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney. Parasitology 2009, 136:615-625.
Burge C.B., Karlin S. Finding the genes in genomic DNA. Current Opinion in Structural Biology 1998, 8:346-354.
Campanella J.J., Bitincka L., Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 2003, 4:29.
Chen Z., Buki K., Vääräniemi J., Gu G., Väänänen H.K. The critical role of IL-34 in osteoclastogenesis. PLoS ONE 2011, 6:e18689.
Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G., et al. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Research 2003, 31:3497-3500.
Chihara T., Suzu S., Hassan R., Chutiwitoonchai N., Hiyoshi M., Motoyoshi K., Kimura F., Okada S. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death and Differentiation 2010, 17:1917-1927.
Clifton-Hadley R.S., Bucke D., Richards R.H. A study of the sequential clinical and pathological changes during proliferative kidney disease in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Disease 1987, 10:335-352.
Costa M.M., Maehr T., Diaz-Rosales P., Secombes C.J., Wang T. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6: effects on macrophage growth and antimicrobial peptide gene expression. Molecular Immunology 2011, 48:1903-1916.
Dai X.M., Ryan G.R., Hapel A.J., Dominguez M.G., Russell R.G., Kapp S., Sylvestre V., Stanley R. Targeted disruption of the mouse colonystimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002, 99:111-120.
Eda H., Shimada H., Beidler D.R., Monahan J.B. Proinflammatory cytokines, IL-1β and TNF-α, induce expression of interleukin-34 mRNA via JNK- and p44/42 MAPK-NF-κB pathway but not p38 pathway in osteoblasts. Rheumatology International 2011, 31:1525-1530.
Eda H., Zhang J., Keith R.H., Michener M., Beidler D.R., Monahan J.B. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 2010, 52:215-220.
Ganassin R.C., Bols N.C. Development of a monocyte/macrophage-like cell line. RTS11, from rainbow trout spleen. Fish and Shellfish Immunology 1998, 8:457-476.
Garceau V., Smith J., Paton I.R., Davey M., Fares M.A., Sester D.P., Burt D.W., Hume D.A. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. Journal of Leukocyte Biology 2010, 87:753-764.
Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327:656-661.
Grayfer L., Hanington P.C., Belosevic M. Macrophage colony-stimulating factor (CSF-1) induces pro-inflammatory gene expression and enhances antimicrobial responses of goldfish (Carassius auratus L.) macrophages. Fish and Shellfish Immunology 2009, 26:406-413.
Hanington P.C., Wang T., Secombes C.J., Belosevic M. Growth factors of lower vertebrates: characterization of goldfish (Carassius auratus L.) macrophage colony stimulating factor-1. Journal of Biological Chemistry 2007, 282:31865-31872.
Haugarvoll E., Bjerkås I., Nowak B.F., Hordvik I., Koppang E.O. Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. Journal of Anatomy 2008, 213:202-209.
Holland J.W., Gould C.R., Jones C.S., Noble L.R., Secombes C.J. The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during a natural outbreak of proliferative kidney disease (PKD). Parasitology 2003, 126(Suppl.):S95-S102.
Hong S., Zou J., Crampe M., Peddie S., Scapigliati G., Bols N., Cunningham C., Secombes C.J. The production and bioactivity of rainbow trout (Oncorhynchus mykiss) recombinant IL-1 beta. Veterinary Immunology and Immunopathology 2001, 81:1-14.
Hwang S.J., Choi B., Kang S.S., Chang J.H., Kim Y.G., Chung Y.H., Sohn D.H., So M.W., Lee C.K., Robinson W.H., Chang E.J. Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Research and Therapy 2012, 14:R14.
Koop B.F., von Schalburg K.R., Leong J., Walker N., Lieph R., et al. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics 2008, 9:545.
Lee L.E., Clemons J.H., Bechtel D.G., Caldwell S.J., Han K.B., Pasitschniak-Arts M., Mosser D.D., Bols N.C. Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biology and Toxicology 1993, 9:279-294.
Lin H., Lee E., Hestir K., Leo C., Huang M., Bosch E., Halenbeck R., Wu G., Zhou A., Behrens D., Hollenbaugh D., Linnemann T., Qin M., Wong J., Chu K., Doberstein S.K., Williams L.T. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008, 320:807-811.
Liu H., Leo C., Chen X., Wong B.R., Williams L.T., Lin H., He X. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochimica et Biophysica Acta 2012, 1824:938-945.
Ma X., Lin W.Y., Chen Y., Stawicki S., Mukhyala K., Wu Y., Martin F., Bazan J.F., Starovasnik M.A. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 2012, 20:676-687.
Meyer A., Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 2005, 27:937-945.
Mizuno T., Doi Y., Mizoguchi H., Jin S., Noda M., Sonobe Y., Takeuchi H., Suzumura A. Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-β neurotoxicity. American Journal of Pathology 2011, 179:2016-2027.
Mouchemore K.A., Pixley F.J. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Critical Reviews in Clinical Laboratory Sciences 2012, 49:49-61.
Nakamichi Y., Mizoguchi T., Arai A., Kobayashi Y., Sato M., Penninger J.M., Yasuda H., Kato S., Deluca H.F., Suda T., Udagawa N., Takahashi N. Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic op/op mice. Proceedings of the National Academy of Sciences of the United States of America 2012, 109:10006-10011.
Nandi S., Gokhan S., Dai X.M., Wei S., Enikolopov G., Lin H., Mehler M.F., Stanley E. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Developmental Biology 2012, 367:100-113.
Ogawa Y., Ohno N., Kameoka K., Yabe S., Sudo T. Differential expression of colony-stimulating factor (CSF) in murine macrophage clones: interferon-gamma-mediated inhibition of CSF production. Cell Structure and Function 1994, 19:49-56.
Pandit J., Bohm A., Jancarik J., Halenbeck R., Koths K., Kim S.H. Three-dimensional structure of dimeric human recombinant macrophage colony stimulating factor. Science 1992, 258:1358-1362.
Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 2011, 8:785-786.
Pollard J.W. Trophic macrophages in development and disease. Nature Reviews Immunology 2009, 9:259-270.
Roca F.J., Cayuela M.L., Secombes C.J., Meseguer J., Mulero V. Post-transcriptional regulation of cytokine genes in fish: a role for conserved AU-rich elements located in the 3'-untranslated region of their mRNAs. Molecular Immunology 2007, 44:472-478.
Schirmer K., Chan A.G., Greenberg B.M., Dixon D.G., Bols N.C. Ability of 16 priority PAHs to be photocytotoxic to a cell line from the rainbow trout gill. Toxicology 1998, 127:143-155.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 2011, 28:2731-2739.
Wang T., Diaz-Rosales P., Costa M.M., Campbell S., Snow M., Collet B., Martin S.A., Secombes C.J. Functional characterization of a nonmammalian IL-21: rainbow trout Oncorhynchus mykiss IL-21 upregulates the expression of the Th cell signature cytokines IFN-gamma, IL-10, and IL-22. Journal of Immunology 2011, 186:708-721.
Wang T., Hanington P.C., Belosevic M., Secombes C.J. Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. Journal of Immunology 2008, 181:3310-3322.
Wang T., Holland J.W., Martin S.A., Secombes C.J. Sequence and expression analysis of two T helper master transcription factors, T-bet and GATA3, in rainbow trout Oncorhynchus mykiss and analysis of their expression during bacterial and parasitic infection. Fish and Shellfish Immunology 2010, 29:705-715.
Wang T., Huang W., Costa M.M., Martin S.A., Secombes C.J. Two copies of the genes encoding the subunits of putative interleukin (IL)-4/IL-13 receptors, IL-4Rα, IL-13Rα1 and IL-13Rα2, have been identified in rainbow trout (Oncorhynchus mykiss) and have complex patterns of expression and modulation. Immunogenetics 2011, 63:235-253.
Wang T., Secombes C.J. Complete sequencing and expression of three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway of the complement system in rainbow trout Oncorhynchus mykiss. Immunogenetics 2003, 55:615-628.
Wang Y., Szretter K.J., Vermi W., Gilfillan S., Rossini C., Cella M., Barrow A.D., Diamond M.S., Colonna M. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunology 2012, 10.1038/ni.2360.
Wang T., Bird S., Koussounadis A., Holland J.W., Carrington A., Zou J., Secombes C.J. Identification of a novel IL-I cytokine family member in teleost fish. Journal of Immunology 2009, 183:962-974.
Wei S., Nandi S., Chitu V., Yeung Y.G., Yu W., Huang M., Williams L.T., Lin H., Stanley E.R. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. Journal of Leukocyte Biology 2010, 88:495-505.
Wethmar K., Smink J.J., Leutz A. Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 2010, 32:885-893.
Witmer-Pack M.D., Hughes D.A., Schuler G., Lawson L., McWilliam A., Inaba K., Steinman R.M., Gordon S. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. Journal of Cell Science 1993, 104:1021-1029.
Wolf K., Quimby M.C. Established eurythermic lines of fish cells in vitro. Science 1962, 135:1065.
Wu X., Brewer G. The regulation of mRNA stability in mammalian cells. Gene 2012, 500:10-21.
Zapata A., Diez B., Cejalvo T., Gutiérrez-de Frías C., Cortés A. Ontogeny of the immune system of fish. Fish and Shellfish Immunology 2006, 20:126-136.