Développement de modèles prédictifs des proportions de duramen et d'écorce des espèces de mélèze cultivées en zones de basse altitude en Europe de l'Ouest (Larix kaempferi (Lambert) Carr., Larix decidua Miller et Larix eurolepis Henry).
Pauwels, D.; Lejeune, Philippe; Paques, L. E.et al.
2003 • In Annals of Forest Science, 60 (3), p. 227-235
Larix; duramen; écorce; modèle prédictif; heartwood; bark; predictive model
Abstract :
[fr] Des modèles prédictifs de la proportion de duramen et d’écorce à 1,3 m de hauteur ont été développés pour les peuplements de mélèze du Japon (Larix kaempferi (Lambert) Carr.) plantés en Région wallonne (Belgique). Ces modèles sont testés pour évaluer dans quelle mesure ils peuvent être appliqués aux mélèzes d’Europe (Larix decidua Miller) et aux mélèzes hybrides (Larix eurolepis Henry) plantés dans les régions de basse altitude de l’Europe de l’Ouest. Pour la proportion de duramen, les variables explicatives retenues sont l’âge du peuplement et le diamètre à 1,3 m. Le modèle présente un coefficient de détermination de 0,859 pour le mélèze du Japon. En moyenne, le mélèze d’Europe présente des proportions de duramen plus faibles. En ce qui concerne la proportion d’écorce, la variable explicative retenue est le diamètre à 1,3 m. La variabilité résiduelle de ce modèle est beaucoup plus importante (R2 de 0,456). Le mélèze d’Europe présente en moyenne des proportions d’écorce plus importantes tandis que celles du mélèze hybride sont plus faibles. Un exemple d’utilisation de ces modèles en combinaison avec un modèle de croissance est présenté. Il permet d’évaluer l’influence d’une sylviculture dynamique sur les proportions deduramen et, dans une moindre mesure, d’écorce. [en] Predictive models for heartwood and bark proportions have been developed for Japanese larch (Larix kaempferi (Lambert) Carr.) planted in South of Belgium. These models have been tested to evaluate the way of applying them to European larch (Larix decidua Miller) and hybrid larch (Larix eurolepis Henry) growing in west-European lowlands. For the heartwood proportion, independent variables selected are stand age and dbh. The model set up for Japanese larch has a R-square of 0.859. In average, European larch has lower heartwood proportion.
With reference to bark proportion, selected independent variable is dbh. Residual variability is far more important for bark models (R-square of 0.456). European larch has, in average, higher bark proportion whereas hybrid larch has lower. An example of the application of these models in connection with a growth model is presented. It consists in an evaluation of the impact of dynamic silviculture on heartwood and bark proportion.
Lejeune, Philippe ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Paques, L. E.
Rondeux, Jacques ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Language :
French
Title :
Développement de modèles prédictifs des proportions de duramen et d'écorce des espèces de mélèze cultivées en zones de basse altitude en Europe de l'Ouest (Larix kaempferi (Lambert) Carr., Larix decidua Miller et Larix eurolepis Henry).
Alternative titles :
[en] Development of predictive models for heartwood and bark proportions for larch species planted in western European lowlands.
Bartelink H.H., Allometric relationships on biomass and needle area of Douglas-fir, For. Ecol. Manage. 86 (1996) 193-203.
Bjorklund L., Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data, Silva Fenn. 33 (1999) 119-129.
Climent J., Gil L., Pardos J., Heartwood and sapwood development and its relationship to growth and environment in Pinus canariensis Chr. Sm ex DC, For. Ecol. Manage. 59 (1993) 165-174.
Courbet F., Houiller F., Modelling the profile and internal structure of tree stem. Application to Cedrus atlantica (Manetti), Ann. For. Sci. 59 (2002) 63-80.
Coyea M.R., Margolis H.A., Factors affecting the relationship between sapwood area and leaf area of balsam fir, Can. J. For. Res. 22 (1992) 1684-1693.
Dagnelie P., Statistique théorique et appliquée. Tome 2. Inférence statistique à une et à deux dimensions, De Boeck, Bruxelles, 1998.
De Kort I., Relationships between sapwood amount, latewood percentage, moisture content and crown vitality of Douglas fir, Pseudostuga menziesii, IAWA J. 14 (1993) 413-427.
Dean T.J., Long J.N., Variation in sapwood area - leaf area ratios within two stands of lodgepole pine, For. Sci. 32 (1986) 749-758.
Eerikäinen K., Stem Volume models with random coefficients for Pinus kesiya in Tanzania, Zambia and Zimbabwe, Can. J. For. Res. 31 (2001) 879-888.
Espinosa Bancalari M.A., Perry D.A., Marshall J.D., Leaf area-sapwood area relationships in adjacent young douglas fir stands with different early growth rates, Can. J. For. Res. 17 (1987) 174-180.
Fries A., Heartwood and sapwood variation in mature provenance trials of Pinus sylvestris, Silvae Genet. 48 (1999) 7-14.
Gilbert J.-M., Chevalier R., Influence de l'âge et de la vitesse de croissance sur le coeur rouge du Pin laricio, Ingénieries EAT 4 (1995) 23-31.
Gordon A., Estimating bark thickness of Pinus radiata, N.Z.J. For. Sci. 13 (1983) 340-353.
Grier C.C., Waring R.H., Conifer foliage mass related to sapwood area, For. Sci. 7 (1974) 205-206.
Hazenberg G., Yang KC., The relationship of tree age with sapwood and heartwood width in black spruce, Picea mariana (Mill.) B.S.P., Holzforsch. 45 (1991) 317-320.
Hirai S., The early stage of the transformation of sapwood of Japanese larch into heartwood, Res. Bull. Coll. Exp. For. Hokkaido Univ. 15 (1952) 239-253.
Long J.N., Smith F.W., Leaf area-sapwood area relations of lodgepole pine as influenced by stand density and site index, Can. J. For. Res. 18 (1988) 247-250.
Leibundgut H., Untersuchungen über europäische Lärchen, Schweiz. Z. Forstwes. 134 (1983) 61-62.
Mäkelä A., Virtanen K., Nikinmaa E., The effects of ring width, stem position, and stand density on the relationship between foliage biomass and sapwood area in Scots pine (Pinus sylvestris), Can. J. For. Res. 25 (1995) 970-977.
Mörling T., Valinger E., Effects of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine, Scand. J. For. Res. 14 (1999) 462-469.
Myers R.H., Classical and modern regression with applications, BWS-KENT, Boston, 1990.
Ojansuu R., Maltamo M., Sapwood and heartwood taper in Scots pine stems, Can. J. For. Res. 25 (1995) 1928-1943.
Palm R., Iemma A.F., Conditions d'application et transformations de variables en régression linéaire, Notes de Statistique et d'Informatique No 1, Faculté universitaire des Sciences agronomiques de Gembloux, 2002.
Pâques L.E., Genetic control of heartwood content in larch, Silvae Genet. 50 (2001) 69-75.
Pauwels D., Rondeux J., Le mélèze, une essence à haut potentiel de production, Silva Belg. 107 (2000) 6-10.
Rondeux J., Pauwels D., Lejeune P., Finalisation du modèle de croissance pour les mélèzes, Rapport final de Convention de recherche financée par la Région wallonne, Faculté universitaire des Sciences agronomiques de Gembloux, 1999.
Sellin A., Sapwood-heartwood proportion related to tree diameter, age and growth rate in Picea abies, Can. J. For. Res. 24 (1994) 1022-1028.
Sellin A., Sapwood amount in Picea abies (L.) Karst. determined by tree age and radial growth rate, Holzforsch. 50 (1996) 291-296.
Snee R.D., Validation of regression models: methods and examples, Technometrics 19 (1977) 415-428.
Takei F., Development of tending techniques to control the heartwood formation of the stems of Japanese larch (Larix leptolepis Gord.), J. Jpn. For. Soc. 78 (1996) 347-353.
Vautherin P., Issartel M., Cubage des bois ronds: vers des taux d'écorce moyens ?, CTBA info 42 (1993) 2-5.
X., Minitab user's guide: data analysis and quality tools, release 13 for windows, PA Stat Collège, Minitab, 2000.
Yang K.C., Hazenberg G., Impact of spacings on sapwood and heartwood thickness in Picea mariana (Mill.) B.S.P. and Picea glauca (Moench.) Voss, Wood Fiber Sci. 24 (1992) 330-336.