[en] Seagrass meadows are highly productive habitats that can act as “blue carbon sinks” in coastal ecosystems by facilitating sedimentation and trapping particles. However, the magnitude and occurrence of these effects may be species and density dependent. The present study is the first estimation of seagrass sediment carbon sink in the temperate Zostera marina beds in the Baltic Sea. Several descriptors of organic matter characteristics, along with possible organic matter sources in the sediment were compared at vegetated and unvegetated bottoms. The 210Pb dating of the sediment has been used for accumulation rate assessment. The photopigments and POC concentrations in sediments were higher in vegetated bottoms. The SIAR (Stable Isotopes in R) mixing model based on nitrogen and carbon stable isotope values, indicated that higher percentages of organic matter originated from seagrass production in vegetated sediments (40–45%) compared to unvegetated ones (5–21%). The carbon stock in the upper 10 cm of the vegetated sediments ranged from 50.2 ± 2.2 to 228.0 ± 11.6 (g m−2), whereas the annual C accumulation amount from 0.84 ± 0.2 to 3.85 ± 1.2 (g m−2 yr−1). Our study shows that even the relatively weakly developed vegetation of the small temperate seagrass species enhance organic carbon concentration in the sediments. Estimated carbon stock was much lower than those reported for most of the seagrass meadows elsewhere, and the carbon burial rate was the lowest ever reported. Evidently, the global calculations of sediment carbon stock should be reconsidered by taking into account density and species-related variability.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Anderson, M. J., R. N. Gorley, and K. R. Clarke (2008), PERMANOVA for PRIMER: Guide to software and statistical methods. PRIMER-E Ltd, Plymouth, U. K.
Blott, S. J., and K. Pye (2001), Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Process Landforms, 26, 1237–1248.
Boeschker, H. T. S., A. Wielemaker, B. E. M. Schaub, and M. Holmer (2000), Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows, Mar. Ecol. Prog. Ser., 203, 181–189.
Bos, A. R., T. J. Bouma, G. L. J. de Kort, and M. M. van Katwijk (2007), Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification, Estuarine Coastal Shelf Sci., 74, 344–348.
Böstrom, C., et al. (2014), Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: Implications for coastal management and conservation, Aquat. Conserv., 3, 410–434.
Bouillon, S., H. T. S. Boschker, and V. U. Brussel (2006), Bacterial carbon sources in coastal sediments: A cross-system analysis based on stable isotope data of biomarkers, Biogeosciences, 3, 175–185.
Bowden, D. A., A. A. Rowden, and M. J. Attrill (2001), Effect of patch size and in-patch location on the infaunal macronvertebrate assemblages of Zostera marina seagrass beds, J. Exp. Mar. Biol. Ecol., 259, 133–154.
Cifuentes, L. A., J. H. Sharp, and M. L. Fogel (1988), Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary, Limnol. Oceanogr., 33, 1102–1115.
Ciais, P., et al. (2013), Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, et al., Cambridge University Press, Cambridge, U. K., and New York.
Ciszewski, P., L. Ciszewska, L. Kruk-Dowgiałło, A. Osowiecki, D. Rybicka, J. Wiktor, M. Wolska-Pys, L. Zmudzinski, and D. Trokowicz (1992), Trends of long-term alternations of the Puck Bay ecosystem, Stud. Mat. Oceanol., 60, 33–84.
Clausen, K. K., D. Krause-Jensen, B. Olesen, and N. Marbà (2014), Seasonality of eelgrass biomass across gradients in temperature and latitude, Mar. Ecol. Prog. Ser., 506, 71–85, doi:10.3354/meps10800.
Coplen, T. B. (2011), Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Spectrom., 25, 2538–2560, doi:10.1002/rcm.5129.
Dalsgaard, T., et al. (2000), Protocol Handbook for NICE—Nitrogen Cycling in Estuaries: A Project Under the EU Research Programme: MAST III, 62 pp., National Environmental Research Institute, Silkeborg, Denmark.
Danovaro, R. (1996), Oetritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean, Mar. Biol., 127, 1–13.
Duarte, C. M., N. Marbà, E. Gacia, J. W. Fourqurean, J. Beggins, C. Barrón, and E. T. Apostolaki (2010), Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cycles, 24, GB4032, doi:10.1029/2010GB003793.
Duarte, C. M., J. J. Middelburg, and N. Caraco (2005), Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 1, 1–8.
Dubois, S., N. Savoye, A. Grémare, M. Plus, K. Charlier, A. Beltoise, and H. Blanchet (2010), Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale, J. Mar. Syst., 94, 64–73.
Evans, C. A., and J. E. O'Reilly (1982), A Manual for the Measurement of Chlorophyll A, Net Phytoplankton, and Nanoplankton: Provisional Copy for Use on Vessels Participating in FIBEX, BIOMASS Scientific Series, vol. 9, 40 pp., Tex.
Evans, C. A., J. E. O'Reilly, and J. P. Thomas (1987), A Handbook for the Measurement of Chlorophyll-A and Primary Productivity, BIOMASS Scientific Series, vol. 8, pp. 114, College Station, Tex.
Folk, R. L., and W. C. Ward (1957), Brazos River bar: A study in the significance of grain size parameters, J. Sediment. Petrol., 27, 3–26.
Fonseca, M. S., and J. S. Fisher (1986), A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration, Mar. Ecol. Prog. Ser., 29, 15–22.
Fourqurean, J. W., et al. (2012), Seagrass ecosystems as a globally significant carbon stock, Nat. Geosci., 5, 505–509.
Friedman, G. M., and J. E. Sanders (1978), Principles of sedimentology, John Wiley & Sons.
Fry, B., R. S. Scalan, and P. L. Parker (1977), Stable carbon isotope evidence for two sources of organic matter in coastal sediments: Seagrass and plankton, Geochim. Cosmochim. Acta, 41, 1875–1877.
Gacia, E., T. C. Granata, and C. M. Duarte (1999), An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows, Aquat. Bot., 65, 255–268.
Gacia, E., C. M. Duarte, and J. J. Middelburg (2002), Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow, Limnol. Oceanogr., 47, 23–32.
Goldberg, E. D. (1963), Geochronology with 210Pb. In Radioactive Dating, pp. 121–131, International Atomic Energy Agancy, Vienna.
Green, E. P., and F. T. Short (2003), World Atlas of Seagrasses Prepared by the UNEP World Conservation Monitoring Center, pp. 298, University of California Press, Berkeley.
Greiner, J. T., K. J. McGlathery, J. Gunnell, and B. A. McKee (2013), Seagrass restoration enhances “blue carbon” sequestration in coastal waters, PLoS One, 8(8e72469), doi:10.1371/journal.pone.0072469.
Hankoop, P. J. C., E. M. Berghuis, S. Holthuijsen, M. S. S. Lavaleye, and T. Piersma (2008), Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d'Arguin, Mauritania, in relation to characteristics of sediment and organic matter, J. Sea Res., 60, 255–263.
Hedges, J. I., and J. H. Stern (1984), Carbon and nitrogen determinations of carbonate-containing solids, Limnol. Oceanogr., 29, 657–663.
Hemminga, M. A., and C. M. Duarte (2000), Seagrass Ecology, pp. 298, Cambridge University Press, Cambridge.
Hemminga, M. A., B. P. Koutstaal, J. van Soelen, and A. G. A. Merks (1994), The nitrogen supply to intertidal eelgrass (Zostera marina), Mar. Biol., 118, 223–227.
Herkul, K., and J. Kotta (2009), Effects of eelgrass (Zostera marina) canopy removal and sediment addition on sediment characteristics and benthic communities in the Northern Baltic Sea, Mar. Ecol., 30, 74–82.
Huang, Y.-H., C.-L. Lee, C.-Y. Chung, S.-C. Hsiao, and H.-J. Lin (2015), Carbon budgets of multispecies seagrass beds at Dongsha Island in the South China Sea, Mar. Environ. Res., 106, 92–102, doi:10.1016/j.marenvres.2015.03.004.
Jankowska, E., K. Jankowska, and M. Włodarska-Kowalczuk (2015), Seagrass vegetation and meiofauna enhance the bacterial abundance in the Baltic Sea sediments (Puck Bay), Environ. Sci. Pollut. Res. Int., doi:10.1007/s11356-015-5049-7.
Jankowska, E., M. Włodarska-Kowalczuk, L. Kotwicki, P. Balazy, and K. Kuliński (2014), Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows, Estuarine Coastal Shelf Sci., 139, 159–170.
Jarosz, E., and M. Kowalewski (1993), in Falowanie Wiatrowe, edited by Z. Pucka and K. Korzeniewski, pp. 206–221, Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, Poland.
Jaschinski, S., D. Brepohl, and U. Sommer (2008), Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses, Mar. Ecol. Prog. Ser., 358(1), 103–114.
Kasim, M., and H. Mukai (2006), Contribution of benthic and epiphytic diatoms to Clam and Oyster production in the Akkeshi-Ko estuary, J. Oceanogr., 62, 267–281.
Kennedy, H., J. Beggins, C. M. Duarte, J. W. Fourqurean, M. Holmer, N. Marbà, and J. J. Middelburg (2010), Seagrass sediments as a global carbon sink: Isotopic constraints, Global Biogeochem. Cycles, 24, GB4026, doi:10.1029/2010GB003848.
Koch, E. W., J. D. Ackerman, J. Verduin, and M. van Keulen (2006), Fluid dynamics in seagrass ecology—From molecules to ecosystems, in Seagrasses: Biology, Ecology and Conservation, edited by A. W. D. Larkum, R. J. Orth, and C. M. Duarte, pp. 193–225, Springer, Dordrecht, Netherlands.
Kruk-Dowigałło, L. (1991), Long term changes in the structure of underwater meadows of the Puck lagoon, in Proceedings 11th Baltic Marine Biology Symposium Acta Ichthyologica et Piscatoria, vol. 21, edited by T. Radziejewska, pp. 77–85, Supplement, Szczecin, Poland.
Lavery, P. S., M. Á. Mateo, O. Serrano, and M. Rozaimi (2013), Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service, PLoS One, 8(9e73748), doi:10.1371/journal.pone.0073748.
Lehmann, M. F., S. M. Bernasconi, A. Barbieri, and J. A. Mckenzie (2002), Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis, Geochim. Cosmochim. Acta, 66(20), 3573–3584.
Lepoint, G., P. Dauby, and S. Gobert (2004), Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems, Mar. Pollut. Bull., 49, 887–891.
Macreadie, P. I., M. E. Baird, S. M. Trevathan-Tackett, A. W. D. Larkum, and P. J. Ralph (2014), Quantifying and modelling the carbon sequestration capacity of seagrass meadows—A critical assessment, Mar. Pollut. Bull., 83, 430–439.
Maksymowska, D., P. Richard, H. Piekarek-Jankowska, and P. Riera (2000), Chemical and isotopic composition of the organic matter sources in the gulf of Gdansk (Southern Baltic Sea), Estuarine Coastal Shelf Sci., 51(5), 585–598.
Marbà, N., A. Arias-Ortiz, P. Masqué, G. a. Kendrick, I. Mazarrasa, G. R. Bastyan, and C. M. Duarte (2015), Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks, J. Ecol., 103, 296–302, doi:10.1111/1365-2745.12370.
Mateo, M. A., J. Cebrian, K. H. Dunton, and T. Mutchler (2006), Carbon flux in seagrass ecosystems, in Seagrasses: Biology, Ecology and Conservation, edited by A. W. D. Larkum, R. J. Orth, and C. M. Duarte, pp. 227–254, Springer, Dordrecht, Netherlands.
Mateo, M. A., J. Romero, M. Pérez, M. M. Littler, and D. S. Littler (1997), Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanic, Estuarine Coastal Shelf Sci., 44, 103–110.
McGlathery, J. K., L. K. Reynolds, L. W. Cole, R. J. Orth, S. R. Marion, and A. Schwarzschild (2012), Recovery trajectories during state change from bare sediment to eelgrass dominance, Mar. Ecol. Prog. Ser., 448, 209–221, doi:10.3354/meps09574.
Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger and B. R. Siliman (2011), A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestrating CO2, Front. Ecol. Environ., 9(10), 552–560, doi:10.1890/110004.
Murray, B. C., L. Pendleton, W. A. Jenkins, and S. Sifleet (2011), Green Payments for Blue Carbon: Economic Incentives for Protecting Threatened Coastal Habitats, Report NI R 11-04, Nicholas Institute for Environmental Policy Solutions, Duke University, Durham, N. C.
Nellemann, C., E. Corcoran, C. M. Duarte, L. Valde's, C. De Young, L. Fonseca, and G. Grimsditch (2009), Blue carbon, in A Rapid Response Assessment, United Nations Environment Programme, GRID-Arendal, Arendal, Norway.
Nowacki, J. (1993), in Stany wód, edited by Z. Pucka and K. Korzeniewski, pp. 206–221, Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, Poland.
Olesen, B., and K. Sand-Jensen (1993), Seasonal acclimatization of eelarass Zostera marina growth to light, Mar. Ecol. Prog. Ser., 94, 91–99.
Papadimitriou, S., H. Kennedy, D. P. Kennedy, C. M. Duarte, and N. Marbá (2005), Sources of organic matter in seagrass-colonized sediments: A stable isotope study of the silt and clay fraction from Posidonia oceanica meadows in the western Mediterranean, Org. Geochem., 36(6), 949–961.
Parnell, A. C., R. Inger, S. Bearhop, and A. L. Jackson (2010), Source partitioning using stable isotopes: Coping with too much variation, PLoS One, 5(3), 9672.
Peralta, G., L. van Duren, E. Morris, and T. Bouma (2008), Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: A hydrodynamic flume study, Mar. Ecol. Prog. Ser., 368, 103–115.
Pollard, P. C., and D. J. W. Moriarty (1989), Organic carbon decomposition, primary and bacterial productivity and sulphate reduction, in tropical seagrass beds of the Gulf of Carpentaria, Australia, Mar. Ecol. Prog. Ser., 69, 149–159.
Ricart, A. M., P. H. York, M. A. Rasheed, M. Perrez, J. Romero, C. V. Bryant, and P. I. Macreadie (2015), Variability of sedimentary organic carbon in patchy seagrass landscapes, Mar. Pollut. Bull., doi:10.1016/j.marpolbul.2015.09.032.
Robbins, A., and D. N. Edgington (1975), Determination of recent sedimentation rates in lake Michigan using Pb-210 and Cs-137, Geochim. Cosmochim. Acta, 39, 285–304.
Rozaimi, M., P. S. Lavery, O. Serrano, and D. Kyrwood (2016), Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany, Western Australia), Estuarine Coastal Shelf Sci., doi:10.1016/j.ecss.2016.01.001.
Sacks, J. P., and D. J. Repeta (1999), Oligotrophy and nitrogen fixation during eastern Mediterranean sapropel events, Science, 286, 2485–2488.
Serrano, O., M. A. Mateo, P. Renom, and R. Julia (2012), Characterization of soils beneath a Posidonia oceanica meadow, Geoderma, 185–186, 26–36.
Simenstad, C. A., and R. C. Wissmar (1985), δ13C evidence of the origins and fates of organic carbon in estuarine and near-shore food webs, Mar. Ecol. Prog. Ser., 22, 141–152.
van Katwijk, M. M., A. R. Bos, D. C. R. Hermus, and W. Suykerbuyk (2010), Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions, Estuarine Coastal Shelf Sci., 89, 175–181.
Welsh, D. T. (2000), Nitrogen fixation in seagrass meadows: Regulation, plant–bacteria interactions and significance to primary productivity, Ecol Lett, 3, 58–71.
Węsławski, J. M., L. Kryla-Straszewska, J. Piwowarczyk, J. Urbański, J. Warzocha, L. Kotwicki, and J. Wiktor (2013), Habitat modelling limitations—Puck Bay, Baltic Sea—A case study, Oceanologia, 55(1), 167–183.
Włodarska-Kowalczuk, M., E. Jankowska, L. Kotwicki, and P. Balazy (2014), Evidence of season-dependency in vegetation effects on Macrofauna in temperate seagrass meadows (Baltic Sea), PLoS One, 9(7e100788), doi:10.1371/journal.pone.0100788.
Zaborska, A., J. Carroll, C. Papucci, and J. Pempkowiak (2007), Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology, J. Environ. Radioact., 93, 38–50.