[en] Many Pseudomonas spp. produce cyclic lipodepsipeptides (CLPs), which, besides their role in biological functions
such as motility, biofilm formation and interspecies interactions, are antimicrobial. It has been established that
interaction with the cellular membrane is central to the mode of action of CLPs. In this work, we focus on the
CLPs of the so-called viscosin group, aiming to assess the impact of the main structural variations observed within
this group on both the antimicrobial activity and the interaction with model membranes. The antimicrobial activity
of viscosin, viscosinamide A, WLIP and pseudodesmin A were all tested on a broad panel of mainly
Gram-positive bacteria. Their capacity to permeabilize or fuse PG/PE/cardiolipin model membrane vesicles is
assessed using fluorescent probes. We find that the Glu2/Gln2 structural variation within the viscosin group is
the main factor that influences both the membrane permeabilization properties and the minimum inhibitory
concentration of bacterial growth, while the configuration of the Leu5 residue has no apparent effect. The CLPmembrane
interactions were further evaluated using CD and FT-IR spectroscopy on model membranes consisting
of PG/PE/cardiolipin or POPC with or without cholesterol. In contrast to previous studies, we observe no conformational
change upon membrane insertion. The CLPs interact both with the polar heads and aliphatic tails of
model membrane systems, altering bilayer fluidity, while cholesterol reduces CLP insertion depth
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Geudens, Niels ✱
Nasir, Mehmet Nail ✱; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie générale et organique
Crowet, Jean-Marc ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
Raaijmakers, Jos
Fehér
Coenye, Tom
Martins, José
Lins, Laurence ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
Sinnaeve, Davy ✱
Deleu, Magali ✱; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
✱ These authors have contributed equally to this work.
Language :
English
Title :
Membrane Interactions of Natural Cyclic Lipodepsipeptides of the Viscosin Group
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
[1] Raaijmakers, J.M., De Bruijn, I., Nybroe, O., Ongena, M., Natural functions of lipopeptides from Bacillus and Pseudomonas. FEMS Microbiol. Rev. 34 (2010), 1037–1062.
[2] Roongsawang, N., Washio, K., Morikawa, M., Diversity of nonribosomal Peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 12 (2010), 141–172.
[3] Gross, H., Loper, J.E., Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26 (2009), 1408–1446.
[4] Raaijmakers, J., De Bruijn, I., De Kock, M., Cyclic lipopeptides production by plant-associated Pseudomonas spp. Mol. Plant-Microbe Interact. 19 (2006), 699–710.
[5] Gross, H., Stockwell, V.O., Henkels, M.D., Nowak-Thompson, B., Loper, J.E., Gerwick, W.H., The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14 (2007), 53–63.
[6] Alsohim, A.S., Taylor, T.B., Barrett, G.A., Gallie, J., Zhang, X.X., Altamirano-Junqueira, A.E., Johnson, L.J., Rainey, P.B., Jackson, R.W., The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ. Microbiol. 16 (2014), 2267–2281.
[7] Song, C., Aundy, K., van de Mortel, J., Raaijmakers, J.M., Discovery of new regulatory genes of lipopeptide biosynthesis in Pseudomonas fluorescens. FEMS Microbiol. Lett. 356 (2014), 166–175.
[8] D'Aes, J., Kieu, N.P., Leclere, V., Tokarski, C., Olorunleke, F.E., De Maeyer, K., Jacques, P., Hofte, M., Ongena, M., To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ. Microbiol. 16 (2014), 2282–2300.
[9] Hofte, M., Altier, N., Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res. Microbiol. 161 (2010), 464–471.
[10] D'Aes, J., De Maeyer, K., Pauwelyn, E., Hofte, M., Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ. Microbiol. Rep. 2 (2010), 359–372.
[11] Nielsen, T.H., Christophersen, C., Anthoni, U., Sorensen, J., Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86 (1999), 80–90.
[12] Gerard, J., Barsby, T., Haden, P., Kelly, M.T., Anderson, R.J., Massetolides, A.-H., antimycobacterial cyclic depsipeptides produced by two Pseumonads isolated from marine habitats. J. Nat. Prod. 60 (1997), 223–229.
[13] Sinnaeve, D., Michaux, C., Van Hemel, J., Vandenkerckhove, J., Peys, E., Borremans, F.A.M., Sas, B., Wouters, J., Martins, J.C., Structure and X-ray conformation of pseudodesmins A and B, two new cyclic lipodepsipeptides from Pseudomonas bacteria. Tetrahedron 65 (2009), 4173–4181.
[14] Jang, J.Y., Yang, S.Y., Kim, Y.C., Lee, C.W., Park, M.S., Kim, J.C., Kim, I.S., Identification of Orfamide A as an Insecticidal Metabolite Produced by Pseudomonas protegens F6. J. Agric. Food Chem. 61 (2013), 6786–6791.
[15] Groupé, V., Pugh, L.H., Weiss, D., Kochi, M., Observations on Antiviral Activity of Viscosin. Exp. Biol. Med. 78 (1951), 354–358.
[16] Van De Mortel, J.E., Tran, H., Govers, F., Raaijmakers, J.M., Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl. Environ. Microbiol. 75 (2009), 4950–4957.
[17] Laycock, M., Hildebrand, P.D., Thibault, P., Walter, J., Wright, J., Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem. 39 (1991), 483–489.
[18] Geudens, N., De Vleeschouwer, M., Feher, K., Rokni-Zadeh, H., Ghequire, M.G., Madder, A., De Mot, R., Martins, J.C., Sinnaeve, D., Impact of a stereocentre inversion in cyclic lipodepsipeptides from the viscosin group: a comparative study of the viscosinamide and pseudodesmin conformation and self-assembly. ChemBioChem 15 (2014), 2736–2746.
[19] Soler-Rivas, C., Arpin, N., Olivier, J.M., Wichers, H.J., WLIP, a Lipodepsipeptide of Pseudomonas reactans, as Inhibitor of the Symptoms of the Brwn Blotch Disease of Agaricus bisporus. J. Appl. Microbiol. 86 (1999), 635–641.
[20] Quail, J.W., Ismail, N., Soledade, M., Pedras, C., Boyetchko, S.M., Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr. C 58 (2002), 268–271.
[21] Sinnaeve, D., Hendrickx, P.M., Van Hemel, J., Peys, E., Kieffer, B., Martins, J., The Solution Structure and Self-Association Properties of the Cyclic Lipodepsipeptide Pseudodesmin A Support Its Pore-Forming Potential. Chem. Eur. J. 15 (2009), 12653–12662.
[22] Mazzola, M., de Bruijn, I., Cohen, M.F., Raaijmakers, J.M., Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol. 75 (2009), 6804–6811.
[23] Reder-Christ, K., Schmidt, Y., Dorr, M., Sahl, H.G., Josten, M., Raaijmakers, J.M., Gross, H., Bendas, G., Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. Biochim. Biophys. Acta, Biomembr. 1818 (2012), 566–573.
[24] Coraiola, M., Lo Cantore, P., Lazzaroni, S., Evidente, A., Iacobellis, N.S., Dalla Serra, M., WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochim. Biophys. Acta, Biomembr. 1758 (2006), 1713–1722.
[25] Lo Cantore, P., Lazzaroni, S., Coraiola, M., Dalla Serra, M., Cafarchia, C., Evidente, A., Lacobellis, N.S., Biological characterization of White Line-Inducing Principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Mol. Plant-Microbe Interact. 19 (2006), 1113–1120.
[26] De Vleeschouwer, M., Sinnaeve, D., Van den Begin, J., Coenye, T., Martins, J.C., Madder, A., Rapid Total Synthesis of Cyclic Lipodepsipeptides as a Premise to Investigate their Self-Assembly and Biological Activity. Chem. Eur. J. 20 (2014), 7766–7775.
[27] Deleu, M., Crowet, J.M., Nasir, M.N., Lins, L., Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochim. Biophys. Acta, Biomembr. 1838 (2014), 3171–3190.
[28] De Souza, J.T., De Boer, M., De Waard, P., Van Beek, T.A., Raaijmakers, J.M., Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69 (2003), 7161–7172.
[29] Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing. Twentieth second Informational Supplement M100-S22. Wayne, PA, USA, 2012.
[30] Vandecandelaere, I., Matthijs, N., Nelis, H.J., Depuydt, P., Coenye, T., The presence of antibiotic-resistant nosocomial pathogens in endotracheal tube biofilms and corresponding surveillance cultures. Pathog. Dis. 69 (2013), 142–148.
[31] Van Bambeke, F., Kerkhofs, A., Schanck, A., Remacle, C., Sonveaux, E., Tulkens, P.M., Mingeot-Leclercq, M.-P., Biophysical studies and intracellular destabilization of pH-sensitive liposomes. Lipids 35 (2000), 213–223.
[32] Mingeot-Leclercq, M.-P., Lins, L., Bensliman, M., Van Bambeke, F., Van Der Smissen, P., Peuvot, J., Schanck, A., Brasseur, R., Membrane destabilization induced by β-amyloid peptide 29-42: Importance of the amino-terminus. Chem. Phys. Lipids 120 (2002), 57–74.
[33] Ellens, H., Bentz, J., Szoka, F.C., Proton- and calcium-induced fusion and destabilization of liposomes. Biochemistry 24 (1985), 3099–3106.
[34] Hoekstra, D., De Boer, T., Klappe, K., Wilschut, J., Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23 (1984), 5675–5681.
[35] Lins, L., Chapelle, L., Talmud, P.J., Thomas, A., Brasseur, R., Lipid-interacting properties of the N-terminal domain of human apolipoprotein C-III. Protein Eng. 15 (2002), 512–520.
[36] Nasir, M.N., Thawani, A., Kouzayha, A., Besson, F., Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids Surf. B Biointerfaces 78 (2010), 17–23.
[37] Savitzky, A., Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 36 (1964), 1627–1639.
[38] Epand, R.F., Savage, P.B., Epand, R.M., Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta 1768 (2007), 2500–2509.
[39] Thrane, C., Nielsen, T.H., Neiendam Nielsen, M., Sorensen, J., Olsson, S., Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rizosphere. FEMS Microbiol. Ecol. 33 (2000), 139–146.
[40] Vass, E., Hollosi, M., Besson, F., Buchet, R., Vibrational Spectroscopic Detection of Beta- and Gamma-Turns in Synthetic and Natural Peptides and Proteins. Chem. Rev. 103 (2003), 1917–1954.
[41] Cerpa, R., Cohen, F.E., Kuntz, I.D., Conformational switching in designed peptides: the helix/sheet transition. Fold. Des. 1 (1996), 91–101.
[42] Timasheff, S., Fasman, G.D., Structure and stability of biological macromolecules. 1969, Dekker, New York.
[43] Tamm, L.K., Tatulian, S.A., Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 30 (1997), 365–429.
[44] Kouzayha, A., Nasir, M.N., Buchet, R., Wattraint, O., Sarazin, C., Besson, F., Conformational and Interfacial Analysis of K 3 A 18 K 3 and Alamethicin in Model Membranes. J. Phys. Chem. B 113 (2009), 7012–7019.
[45] Arrondo, J.L.R., Goñi, F.M., Infrared studies of protein-induced perturbations of lipids in lipoproteins and membranes. Chem. Phys. Lipids 96 (1998), 53–68.
[46] Mantsch, H.H., McElhaney, R.N., Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids 57 (1991), 213–226.
[47] Thennarasu, S., Lee, D.K., Tan, A., Prasad Kari, U., Ramamoorthy, A., Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Biochim. Biophys. Acta 1711 (2005), 49–58.
[48] Sinnaeve, D., Delsuc, M.-A., Martins, J.C., Kieffer, B., Insight into peptide self-assembly from anisotropic rotational diffusion derived from 13 C NMR relaxation. Chem. Sci. 3 (2012), 1284–1292.
[49] Prenner, E.J., Lewis, R.N., Jelokhani-Nairaki, M., Hodges, R.S., McElhaney, R.N., Cholesterol attenuates the interaction of the antimicrobial peptide gramicidin S with phospholipid bilayer membranes. Biochim. Biophys. Acta 1510 (2001), 83–92.
[50] Nasir, M.N., Besson, F., Specific Interactions of Mycosubtilin with Cholesterol-Containing Artificial Membranes. Langmuir 27 (2011), 10785–10792.
[51] Fiedler, S., Heerklotz, H., Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis. Biophys. J. 109 (2015), 2079–2089.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.