[en] About 2000 FUV spectra of different regions of Saturn's aurora, obtained with Cassini/UVIS from December 2007 to October 2014 have been examined. Two methods have been employed to determine the mean energy 〈E〉 of the precipitating electrons. The first is based on the absorption of the auroral emission by hydrocarbons and the second uses the ratio between the brightness of the Lyman-α line and the H2 total UV emission (Lyα/H2), which is directly related to 〈E〉 via a radiative transfer formalism. In addition, two atmospheric models obtained recently from UVIS polar occultations have been employed for the first time. It is found that the atmospheric model related to North observations near 70° latitude provides the results most consistent with constraints previously published.
On a global point of view, the two methods provide comparable results, with 〈E〉 mostly in the 7–17 keV range with the hydrocarbon method and 〈E〉 in the 1–11 keV range with the Lyα/H2 method. Since hydrocarbons have been detected on ∼20% of the auroral spectra, the Lyα/H2 technique is more effective to describe the primary auroral electrons, as it is applicable to all spectra and allows an access to the lowest range of energies (≤5 keV), unreachable by the hydrocarbon method. The distribution of 〈E〉 is found fully compatible with independent HST/ACS constraints (emission peak in the 840–1450 km range) and FUSE findings (emission peaking at pressure level ≤0.2 µbar). In addition, 〈E〉 exhibits enhancements in the 3 LT–10 LT sector, consistent with SKR intensity measurements.
An energy flux–electron energy diagram built from all the data points strongly suggests that acceleration by field-aligned potentials as described by Knight's theory is a main mechanism responsible for electron precipitation creating the aurora. Assuming a fixed electron temperature of 0.1 keV, a best-fit equatorial electron source population density of 3 × 103 m−3 is derived, which matches very well to the plasma properties observed with Cassini MAG and CAPS/ELS instruments. However, several auroral regions are characterized by relatively high 〈E〉 and low energy flux, suggesting that additional processes such as plasma injections or magnetic reconnections must be accounted for to explain the emission in these regions.
The Lyα/H2 ratio technique can be used to build maps of 〈E〉 from single spectral images. As expected, preliminary results show that the spatial distribution of 〈E〉 is not uniform, as seen on Jupiter.
Our study reveals that a fraction of the aurora is due to very low energy electrons (<1 keV). Even in this case, comparisons between observed and modeled spectra show that 100 eV is a suitable value to represent the average energy of the secondary electrons.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gustin, Jacques ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Radioti, Aikaterini ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Pryor, Wayne; Central Arizona College, 8470 N. Overfield Rd., 85228 Coolidge, AZ, USA
Lamy, Laurent; LESIA-Observatoire de Paris, CNRS, 92195 Meudon, France
Ajello, Joe; LASP, University of Colorado, 80303 Boulder, CO, USA
Language :
English
Title :
Statistical study of Saturn's auroral electron properties with Cassini/UVIS FUV spectral images
Ajello, J., et al. The Cassini campaign observations of the Jupiter aurora by the ultraviolet imaging spectrograph and the space telescope imaging spectrograph. Icarus 178 (2005), 327–345, 10.1016/j.icarus.2005.01.023.
Arridge, C.S., et al. Plasma electrons in Saturn's magnetotail: structure, distribution and energisation. Planet. Space Sci. 509 (2009), 2032–2047.
Badman, S.V., Branduardi-Raymont, G., Galand, M., Hess, S.L.G., Krupp, N., Lamy, L., Melin, H, Tao, C, Auroral processes at the giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev. 187:1–4 (2014), 99–179, 10.1007/s11214-014-0042-x.
Badman, S.V., Jackman, C.M., Nichols, J.D., Clarke, J.T., Gérard, J.C., Open flux in Saturn's magnetosphere. Icarus 231 (2014), 137–145 http://dx.doi.org/10.1016/j.icarus.2013.12.004.
Carbary, J.F., The morphology of Saturn's ultraviolet aurora. J. Geophys. Res., 117, 2012, A6, 10.1029/2012JA017670.
Cowley, S.W.H., Bunce, E.J., Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planet. Space Sci., 49, 2001, 1067.
Cowley, S.W.H., et al. Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 26 (2008), 2613–2630.
Dols, V., et al. Diagnostics of the jovian aurora deduced from ultraviolet spectroscopy: model and HST/GHRS observation. Icarus 147 (2000), 251–266 http://dx.doi.org/10.1006/icar.2000.6415.
Dziczek, D., Ajello, J.M., James, G.K., Hansen, D.L., Cascade contribution to the H2 Lyman band system from electron impact. Phys. Rev. A 61 (2000), 64702-1–64702-4.
Esposito, L.W., et al. The Cassini ultraviolet imaging spectrograph investigation. Space Sci. Rev. 115 (2004), 299–361.
Gérard, J.C., Grodent, D., Gustin, J., Saglam, A., Clarke, J.T., Trauger, J.T., Characteristics of Saturn's FUV aurora observed with the space telescope imaging spectrograph. J. Geophys. Res., 109, 2004, A09207, 10.1029/2004JA010513.
Gérard, J.-C., et al. Altitude of Saturn's aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett., 36, 2009, L02202 http://dx.doi.org/10.1029/2008GL036554.
Gérard, J.C., Gustin, J., Pryor, W.R., Grodent, D., Bonfond, B., Radioti, A., Gladstone, G.R., Clarke, J.T., Nichols, J.D., Remote sensing of the energy of auroral electrons in Saturn's atmosphere: Hubble and Cassini spectral observations. Icarus 223 (2012), 211–221 http://dx.doi.org/10.1016/j.icarus.2012.11.033.
Grodent, D., Waite, J.H. Jr., Gérard, J.C., A self-consistent model of the jovian auroral thermal structure. J. Geophys. Res. 106 (2001), 12933–12952, 10.1029/2000JA900129.
Grodent, D., Gérard, J.-C., Cowley, S.W.H., Bunce, E.J., Clarke, J.T., Variable morphology of Saturn's southern ultraviolet aurora. J. Geophys. Res., 110, 2005, A07215, 10.1029/2004JA010983.
Grodent, D., Radioti, A., Bonfond, B., Gérard, J.-C., On the origin of Saturn's outer auroral emission. J. Geophys. Res., 115, 2010, A08219, 10.1029/2009JA014901.
Grodent, D., Gustin, J., Gérard, J.-C., Radioti, A., Bonfond, B., Pryor, W.R., Small-scale structures in Saturn's ultraviolet aurora. J. Geophys. Res., 116, 2011, A09225, 10.1029/2011JA016818.
Grodent, D., A brief review of ultraviolet auroral emissions on giant planets. Space Sci. Rev., 2014, 10.1007/s11214-014-0052-8.
Guerlet, S., et al. Vertical and meridional distribution of ethane, acetylene and propane in Saturn's stratosphere from CIRS/Cassini limb observations. Icarus 203 (2009), 214–232.
Guerlet, S., et al. Evolution of the equatorial oscillation in saturn's stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophys. Res. Lett., 38, 2011, L09201.
Gustin, J., et al. Spatially resolved far ultraviolet spectroscopy of the jovian aurora. Icarus 157 (2002), 91–103, 10.1006/icar.2001.6784.
Gustin, J., Gérard, J.-C., Grodent, D., Cowley, S.W.H., Clarke, J.T., Grard, A., Energy–flux relationship in the FUV jovian aurora deduced from HST-STIS spectral observations. J. Geophys. Res., 109, 2004, 10.1029/2033JA010365.
Gustin, J., Feldman, P.D., Gérard, J.-C., Grodent, D., Vidal-Madjar, A., Ben Jaffel, L., Desert, J.-M. Moos, H.W., Sahnow, D.J., Weaver, H.A., Wolven, B.C., Ajello, J.M., Waite, J.H., Roueff, E., Abgrall, H., Jovian auroral spectroscopy with FUSE: analysis of self-absorption and implications for electron precipitation. Icarus 171 (2004), 336–355.
Gustin, J., Gérard, J.-C., Pryor, W., Feldman, P.D., Grodent, D., Holsclaw, G., Characteristics of Saturn's polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200 (2009), 176–187, 10.1016/j.icarus.2008.11.013.
Gustin, J., Gérard, J.-C., Grodent, D., Gladstone, G.R., Clarke, J.T., Pryor, W.R., Dols, V., Bonfond, B., Radioti, A., Lamy, L., Ajello, J.M, Effects of methane on giant planet's UV emissions and implications for the auroral characteristics. J. Mol. Spectrosc. 291 (2013), 108–117 http://dx.doi.org/10.1016/j.jms.2013.03.010.
Gustin, J., Grodent, D., Ray, L.C., Bonfond, B., Bunce, E.J., Nichols, J.D., Ozak, N., Characteristics of north jovian aurora from STIS FUV spectral images. Icarus 268 (2016), 215–241 (2016) http://dx.doi.org/10.1016/j.icarus.2015.12.048.
Koskinen, T.T., Moses, J.I., West, R.A., Guerlet, S., Jouchoux, A., The detection of benzene in Saturn's upper atmosphere. Geophys. Res. Lett., 2016, 10.1002/2016GL070000.
Knight, S., Parallel electric fields. Planet. Space Sci., 21, 1973, 741.
Lamy, L., Cecconi, B., Prangé, R., Zarka, P., Nichols, J.D., Clarke, J.T., An auroral oval at the footprint of Saturn's kilometric radio sources, colocated with the UV aurorae. J. Geophys. Res., 114, 2009, A10212, 10.1029/2009JA014401.
Lamy, L., Prangé, R., Pryor, W., Gustin, J., Badman, S.V., Melin, H., Stallard, T., Mitchell, D.G., Brandt, P.C., Multispectral simultaneous diagnosis of saturn's aurorae throughout a planetary rotation. J. Geophys. Res. Space Phys. 118 (2013), 4817–4843, 10.1002/jgra.50404.
Liu, X., Shemansky, D., Abgrall, H., Roueff, E., Dziczek, D., Hansen, D., Ajello, J., Time-resolved electron impact study of excitation of H2 singlet–gerade states from cascade emission in the vacuum ultraviolet region. Astrophys. J. Suppl. 138 (2002), 229–245.
Lundin, R., Sandahl, I., Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights. Symposium on European Rocket Research,ESA SP-135, 1978, 125–136.
Melin, H., Miller, S., Stallard, T., Trafton, L.M., Geballe, T.R., Variability in the H3 + emission of Saturn: consequences for ionization rate and temperature. Icarus 186 (2007), 234–241.
Mitchell, D.G., et al. Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57 (2009), 1732–1742 http://dx.doi.org/10.1016/j.pss.2009.04.002.
McClintock, W.E., Lawrence, G.M., Kohnert, R.A., Esposito, L.W., Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn. Opt. Eng., 32, 1993, 3038.
Melin, H., et al. Variability in the H3 + emission of Saturn: consequences for ionisation rates and temperature. Icarus 186 (2007), 234–241, 10.1016/j.icarus.2006.08.014.
Melin, H., et al. Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: comparing emissions from H, H2, and H3 + at a high spatial resolution. Geophys. Res. Lett., 38, 2011, L15203.
Menager, H., Barthélemy, M., Lilensten, J., H Lyman α line in jovian aurora: electron transport and radiative transfer coupled modeling. Astron. Astrophys., 509, 2010, A56.
Meredith, C.J., Cowley, S.W.H., Hansen, K.C., Nichols, J.D., Yeoman, T.K., Simultaneous conjugate observations of small-scale structures in Saturn's dayside ultraviolet auroras: implications for physical origins. J. Geophys. Res. 118 (2013), 2244–2266, 10.1002/jgra.50270.
Meredith, C.J., Cowley, S.W.H., Nichols, J.D., Survey of Saturn auroral storms observed by the Hubble Space Telescope: implications for storm time scales. J. Geophys. Res.: Space Phys. 119:12 (2014), 9624–9642, 10.1002/2014JA020601.
Moses, J.I., Bézard, B., Lellouch, E., Feuchtgruber, H., Gladstone, G.R., Allen, M., Photochemistry of Saturn's atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143 (2000), 244–298.
Pryor, W.R., The auroral footprint of Enceladus on Saturn. Nature 472 (2011), 331–333, 10.1038/nature09928.
Radioti, A., et al. Bifurcations of the main auroral ring at Saturn: ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. (Space Phys.), 116, 2011, 11209 http://dx.doi.org/10.1029/2011JA016661.
Radioti, A., Roussos, E., Grodent, D., Gérard, J.-C., Krupp, N., Mitchell, D.G., Gustin, J., Bonfond, B., Pryor, W., Signatures of magnetospheric injections in Saturn's aurora. J. Geophys. Res. Space Phys. 118 (2013), 1922–1933, 10.1002/jgra.50161.
Radioti, A., Grodent, D., Jia, X., Gérard, J.-C., Bonfond, B., Pryor c, W., Gustin, J., Mitchell, D.G., Jackman, C.M., A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS observations. Icarus, 2016 http://dx.doi.org/10.1016/j.icarus.2014.12.016.
[12] Ray, L.C., Galand, M., Delamere, P.A., Fleshman, B.L., Current-voltage relation for the Saturnian system. J. Geophys. Res. 118 (2013), 3214–3222, 10.1002/jgra.50330.
Rego, D., Prangé, R., Ben Jaffel, L., Auroral Lyman α and H 2 bands from the giant planets: 3. Lyman α spectral profile including charge exchange and radiative transfer effects and H 2 color ratios. J. Geophys. Res. 104:E3 (1999), 5939–5954, 10.1029/1998JE900048.
Shematovich, V.I., Bisikalo, D.V., Gérard, J.C., A kinetic model of the formation of the hot oxygen geocorona: 1. Quiet geomagnetic conditions. J. Geophys. Res. 99 (1994), 23217–23228.
Sylvestre, M., Guerlet, S., Fouchet, T., Spiga, A., Flasar, F.M., Hesman, B., Bjoraker, G.L., Seasonal changes in Saturn's stratosphere inferred from Cassini/CIRS limb observations. Icarus 258 (2015), 224–238, 10.1016/j.icarus.2015.05.025.
Tao, C., Badman, S.V., Fujimoto, M., UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213 (2011), 581–592.
Tao, C., Lamy, L., Prangé, R., The brightness ratio of H Lyman-α/H 2 bands in FUV auroral emissions: a diagnosis for the energy of precipitating electrons and associated magnetospheric acceleration processes applied to Saturn. Geophys. Res. Lett. 41 (2014), 6644–6651, 10.1002/2014GL061329.
Wannawichian, S., Clarke, J.T., Pontius, D.H., Interaction evidence between Enceladus’ atmosphere and Saturn's magnetosphere. J. Geophys. Res.: Space Phys., 113(A7), 2008, 10.1029/2007JA012899.