Hydrological modelling; Flood; Meuse; Model comparison; Hydrology; Modélisation hydrologique; Hydrologie
Abstract :
[en] International collaboration between research institutes and universities is a promising way to reach consensus on hydrological model development. Although comparative studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the comparison methods used, which focus too much on a good overall performance instead of focusing on specific events. In this study, we use an approach that focuses on the evaluation of specific events and characteristics. Eight international research groups calibrated their hourly model on the Ourthe catchment in Belgium and carried out a validation in time for the Ourthe catchment and a validation in space for nested and neighbouring catchments. The same protocol was followed for each model and an ensemble of best performing parameter sets was selected. Although the models showed similar performances based on general metrics (i.e. Nash–Sutcliffe Efficiency), clear differences could be observed for specific events. The results illustrate the relevance of including a very quick flow reservoir preceding the root zone storage to model peaks during low flows and including a slow reservoir in parallel with the fast reservoir to model the recession for the Ourthe catchment. This intercomparison enhanced the understanding of the hydrological functioning of the catchment and, above all, helped to evaluate each model against a set of alternative models.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Civil engineering
Author, co-author :
de Boer-Euser, Tanja; Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, NL-2600 GA Delft, The Netherlands
Savenije, Hubert; Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, NL-2600 GA Delft, The Netherlands
Thirel, Guillaume; Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), 1, rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony Cedex, France
Willems, Patrick; Hydraulics division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, BE-3001 Leuven, Belgium
Language :
English
Title :
Looking beyond general metrics for model comparison – lessons from an international model intercomparison study
Publication date :
2017
Journal title :
Hydrology and Earth System Sciences
ISSN :
1027-5606
eISSN :
1607-7938
Publisher :
European Geosciences Union, Katlenburg-Lindau, Germany
Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales, Water Re-sour. Res., 50, 5638-5661, doi:10.1002/2014WR015692, 2014.
Brauer, C. C., Teuling, A. J., Torfs, P. J. J. F., and Uijlenhoet, R.: The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332, doi:10.5194/gmd-7-2313-2014, 2014a.
Brauer, C. C., Torfs, P. J. J. F., Teuling, A. J., and Uijlenhoet, R.: The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and the Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028, doi:10.5194/hess-18-4007-2014, 2014b.
Breuer, L., Huisman, J., Willems, P., Bormann, H., Bronstert, A., Croke, B., Frede, H.-G., Gräff, T., Hubrechts, L., Jake-man, A., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D., Lindström, G., Seibert, J., Sivapalan, M., and Viney, N.: Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercompari-son with current land use, Adv. Water Resour., 32, 129-146, doi:10.1016/j.advwatres.2008.10.003, 2009.
Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castel-larin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hut-ton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101-2117, doi:10.5194/hess-19-2101-2015, 2015.
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resour. Res., 47, W09301, doi:10.1029/2010WR009827, 2011.
Collischonn, B., Collischonn, W., and Morelli Tucci, C.: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates, J. Hydrol., 360, 207-216, doi:10.1016/j.jhydrol.2008.07.032, 2008.
de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H. G.: Influence of soil and climate on root zone storage capacity, Water Resour. Res., 52, 2009-2024, doi:10.1002/2015WR018115, 2016.
Detty, J. M. and McGuire, K. J.: Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment, Hydrol. Process., 24, 2222-2236, doi:10.1002/hyp.7656, 2010.
de Wit, M., Peeters, H., Gastaud, P., Dewil, P., Maeghe, K., and Baumgart, J.: Floods in the Meuse basin: Event descriptions and an international view on ongoing measures, Int. J. River Basin Manage., 5, 279-292, doi:10.1080/15715124.2007.9635327, 2007.
Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrolog. Sci. J., 61, 255-273, 2016.
Driessen, T. L. A., Hurkmans, R. T. W. L., Terink, W., Hazen-berg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model, Hydrol. Earth Syst. Sci., 14, 651-665, doi:10.5194/hess-14-651-2010, 2010.
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H., Gusev, Y., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E.: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J Hydrol., 320, 3-17, doi:10.1016/j.jhydrol.2005.07.031, 2006.
Duan, Q., Ajami, N., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371-1386, doi:10.1016/j.advwatres.2006.11.014, 2007.
European Environment Agency: http://www.eea.europa.eu/data-and-maps/data/clc-2000-raster-3 (last access: 21 September 2015), 2000.
Euser, T., Hrachowitz, M., Winsemius, H., and Savenije, H.: The effect of forcing and landscape distribution on performance and consistency of model structures, Hydrol. Process., 29, 3727-3743, doi:10.1002/hyp.10445, 2015.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour. Res., 47, W11510, doi:10.1029/2010WR010174, 2011.
Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions, Water Resour. Res., 52, 954-989, doi:10.1002/2015WR017398, 2016.
Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsi-tanon, N., and Savenije, H. H. G.: Climate controls how ecosystems size the root zone storage capacity at catchment scale: Root zone storage capacity in catchments, Geophys. Res. Lett., 41, 7916-7923, doi:10.1002/2014GL061668, 2014.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci., 18, 4839-4859, doi:10.5194/hess-18-4839-2014, 2014.
Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D. B., Du-mont, E., Hagemann, S., Bertrand, N., Gerten, D., Heinke, J., Hanasaki, N., Voss, F., and Koirala, S.: Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe, J. Hydrometeorol., 13, 604-620, doi:10.1175/JHM-D-11-083.1, 2012.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463-477, doi:10.5194/hess-18-463-2014, 2014.
Hargreaves, G. and Samani, Z.: Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1, 96-99, doi:10.13031/2013.26773, 1985.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and pre-cipitation for 1950-2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201, 2008.
Holländer, H. M., Blume, T., Bormann, H., Buytaert, W., Chirico, G., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Stamm, C., Stoll, S., Blöschl, G., and Flühler, H.: Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data, Hydrol. Earth Syst. Sci., 13, 2069-2094, doi:10.5194/hess-13-2069-2009, 2009.
Holländer, H. M., Bormann, H., Blume, T., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Krauße, T., Kraft, P., Stoll, S., Blöschl, G., and Flühler, H.: Impact of modellers' decisions on hydrological a priori predictions, Hy-drol. Earth Syst. Sci., 18, 2065-2085, doi:10.5194/hess-18-2065-2014, 2014.
Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resour. Res., 50, 7445-7469, doi:10.1002/2014WR015484, 2014.
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548-7555, doi:10.1002/2016WR019285, 2016.
Kleidon, A. and Heimann, M.: A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle, Global Change Biol., 4, 275-286, doi:10.1046/j.1365-2486.1998.00152.x, 1998.
Koch, J., Cornelissen, T., Fang, Z., Bogena, H., Diekkrüger, B., Kollet, S., and Stisen, S.: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment, J. Hydrol., 533, 234-249, doi:10.1016/j.jhydrol.2015.12.002, 2016.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360-379, doi:10.1029/2012WR012195, 2013.
Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 48, W01526, doi:10.1029/2011WR010608, 2012.
Lang, C., Freyermuth, A., Gille, E., and François, D.: Le dispositif PRESAGES (PREvisions et Simulations pour l'Annonce et la Gestion des Etiages Sévères): des outils pour évaluer et prévoir les étiages, Géocarrefour, 81, 15-24, doi:10.4000/geocarrefour.1715, 2006.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272-288, doi:10.1016/S0022-1694(97)00041-3, 1997.
Mathevet, T.: Which rainfall-runoff model at the hourly time-step? Empirical development and intercomparison of rainfall runoff model on a large sample of watersheds, PhD thesis, ENGREF University, Paris, France, 2005.
McMillan, H.: Effect of spatial variability and seasonality in soil moisture on drainage thresholds and fluxes in a conceptual hydrological model, Hydrol. Process., 26, 2838-2844, doi:10.1002/hyp.9396, 2012.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 10, 282-290, doi:10.1016/0022-1694(70)90255-6, 1970.
Nicolle, P., Pushpalatha, R., Perrin, C., François, D., Thiéry, D., Mathevet, T., Le Lay, M., Besson, F., Soubeyroux, J.-M., Viel, C., Regimbeau, F., Andréassian, V., Maugis, P., Augeard, B., and Morice, E.: Benchmarking hydrological models for low-flow simulation and forecasting on French catchments, Hy-drol. Earth Syst. Sci., 18, 2829-2857, doi:10.5194/hess-18-2829-2014, 2014.
Nielsen, S. and Hansen, E.: Numerical simulation of the rainfall runoff process on a daily basis, Nord. Hydrol., 4, 171-190, 1973.
Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije, H. H. G., and Hrachowitz, M.: The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models, Hydrol. Earth Syst. Sci., 20, 1151-1176, doi:10.5194/hess-20-1151-2016, 2016.
Nippgen, F., McGlynn, B. L., and Emanuel, R. E.: The spatial and temporal evolution of contributing areas, Water Resour. Res., 51, 4550-4573, doi:10.1002/2014WR016719, 2015.
Penna, D., van Meerveld, H. J., Oliviero, O., Zuecco, G., As-sendelft, R. S., Dalla Fontana, G., and Borga, M.: Seasonal changes in runoff generation in a small forested mountain catchment, Hydrol. Process., 29, 2027-2042, doi:10.1002/hyp.10347, 2015.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275-289, doi:10.1016/S0022-1694(03)00225-7, 2003.
Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci., 16, 3435-3449, doi:10.5194/hess-16-3435-2012, 2012.
Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M., and Samaniego, L.: Mul-tiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins, J. Hydrometeorol., 17, 287-307, doi:10.1175/JHM-D-15-0054.1, 2016.
Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J., and DMIP Participants: Overall distributed model intercompari-son project results, J. Hydrol., 298, 27-60, 2004.
Rinderer, M., van Meerveld, H. J., and Seibert, J.: Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid?, Water Resour. Res., 50, 6067-6080, doi:10.1002/2013WR015009, 2014.
Savenije, H. H. G.: HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)", Hydrol. Earth Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.
Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol. Process., 21, 2075-2080, doi:10.1002/hyp.6825, 2007.
Seibert, S. P., Jackisch, C., Ehret, U., Pfister, L., and Zehe, E.: Exploring the interplay between state, structure and runoff behaviour of lower mesoscale catchments, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-109, in review, 2016.
Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N., Anderson, E. A., and DMIP 2 participants: Results of the DMIP 2 Oklahoma experiments, J. Hydrol., 418, 17-48, 2012.
Spence, C: A Paradigm Shift in Hydrology: Storage Thresholds Across Scales Influence Catchment Runoff Generation, Geogr. Compass, 4, 819-833, doi:10.1111/j.1749-8198.2010.00341.x, 2010.
Thirel, G, Andréassian, V., and Perrin, C: On the need to test hy-drological models under changing conditions, Hydrolog. Sci. J., 60, 1165-1173, doi: 10.1080/02626667.2015.1050027, 2015a.
Thirel, G, Andréassian, V., Perrin, C, Audouy, J.-N., Berthet, L., Edwards, P., Folton, N., Furusho, C, Kuentz, A., Lerat, J., Lindström, G, Martin, E., Mathevet, T, Merz, R., Parajka, J., Ruelland, D., and Vaze, J.: Hydrology under change: An evaluation protocol to investigate how hydrological models deal with changing catchments, Hydrolog. Sci. J., 60, 1184-1199, doi: 10.1080/02626667.2014.967248, 2015b.
Valéry, A., Andréassian, V, and Perrin, C: 'As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Ce-maneige snow accounting routine on 380 catchments, J. Hydrol., 517, 1176-1187, doi:10.1016/j.jhydrol.2014.04.058, 2014.
Vansteenkiste, T, Tavakoli, M., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., and Willems, P.: Intercompar-ison of five lumped and distributed models for catchment runoff and extreme flow simulation, J. Hydrol., 511, 335-349, doi: 10.1016/j.jhydrol.2014.01.050, 2014.
Vrugt, J. A., Gupta, H. V, Bastidas, L. A., Bouten, W., and Sorooshian, S.: Effective and efficient algorithm for multiobjec-tive optimization of hydrologic models, Water Resour. Res., 39, 1214, doi:10.1029/2002WR001746, 2003.
Weiler, M. and Beven, K.: Do we need a Community Hydrological Model?, Water Resour. Res., 51, 7777-7784, doi:10.1002/2014WR016731, 2015.
Willems, P.: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models, Environ. Model. Softw., 24, 311-321, doi:10.1016/j.envsoft.2008.09.005, 2009.
Willems, P.: Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydro-logical extremes - Part 1: Step-wise model-structure identification and calibration approach, J. Hydrol., 510, 578-590, doi:10.1016/j.jhydrol.2014.01.017, 2014.
Willems, P., Mora, D., Vansteenkiste, T., Taye, M. T, and Van Steenbergen, N.: Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes - Part 2: Intercomparison of models and calibration approaches, J. Hydrol., 510, 591-609, doi: 10.1016/j.jhydrol.2014.01.028, 2014.
Winsemius, H. C, Schaefli, B., Montanari, A., and Savenije, H. H. G: On the calibration of hydrological models in un-gauged basins: A framework for integrating hard and soft hydrological information, Water Resour. Res., 45, W12422, doi:10.1029/2009WR007706, 2009.