[en] Design of an extraction apparatus is significantly influenced by the coalescence behavior of a given material system. At the same time, quantifying coalescence of a systemin anextraction columnis tedious, as pilot-plant experiments have to be performed. These tests have to be carried out for each systemindividually, as coalescence is strongly influenced by traces of impurities. On the other hand, coalescence behavior for designing mixer–settler processes can be quantified in simple discontinuous lab-scale settling tests. Therefore, it was the objective of this work to develop a method to characterize the coalescence behavior in extraction columns with minimal effort. For this purpose, different measurement techniques for quantifying coalescence were applied and compared.
In order to transfer the results obtained in lab-scale experiments to model extraction columns, models available in the literature were tested and significantly modified. The new method allows separating the coalescence behavior in extraction columns into two factors: On the one hand, hydrodynamic effects determining, for example, the frequency of drop collisions and collision intensity have to be considered which depend on the geometry of a specific column and on the operating conditions, which have to be characterized only once for each column type.On the other hand, coalescence behavior of a specific material system has to be quantified only with a simple lab-scale settling experiment, which characterizes the approach of two drops and their individual coalescence process. The results of simulations for extraction columns based on this model approach compare very well with experimental data. Thus, this new approach allows a universal characterization of coalescence for all common extraction equipment, namely mixer–settlers as well as columns, where the system-specific coalescence is characterized in a simple lab-scale experiment.
Disciplines :
Chemical engineering
Author, co-author :
Kopriwa, Nicole
Pfennig, Andreas ; Université de Liège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Language :
English
Title :
Characterization of Coalescence in Extraction Equipment Based on Lab-Scale Experiments
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ragauskas, A.J.,; Williams, C.K.,; Davison, B.H.,; Britovsek, G.,; Cairney, J.,; Eckert, C.A.,; Frederick Jr., W.J.,; Hallett, J.P.,; Leak, D.J.,; Liotta, C.L.,; Mielenz, J.R.,; Murphy, R.,; Templer, R.,; Tschaplinski, T., The path forward for biofuels and biomaterials. Science 2006, 311, 484–489.
Frenzel, P.,; Fayyaz, S.,; Hillerbrand, R.,; Pfennig, A., Biomass as feedstock in the chemical industry–An examination from an exergetic point of view. Chem. Eng. Technol. 2013, 36(2), 233–240.
Cherubini, F.,; Strømman, A.H., Production of biofuels and biochemicals from lignocellulosic biomass:Estimation of maximum theoretical yields and efficiencies using matrix algebra. Energy Fuels 2010, 24(4), 2657–2666.
Henschke, M.,; Schlieper, L.H.,; Pfennig, A., Determination of a coalescence parameter from batch-settling experiments. Chem. Eng. J. 2002, 85, 369–378.
Jeelani, S.A.K.,; Hartland, S., Prediction of steady state dispersion height from batch settling data. AIChE J. 1985, 31(5), 711–720.
Hartland, S.,; Jeelani, S.A.K., Choice of model for predicting the dispersion height in liquid/liquid gravity settlers from batch settling data. Chem. Eng. Sci. 1987, 42(8), 1927–1938.
Henschke, M., Auslegung pulsierter Siebboden-Extraktionskolonnen, Berichte aus der Verfahrenstechnik; Shaker Verlag:Aachen; 2004.
Schmidt, S.,; Steinmetz, T.,; Bart, H.-J., Scaling of stirred extraction columns based on single drop studies. Chem. Ing. Techn. 2004, 76(9), 1405–1406.
Pfennig, A.,; Stichlmair, J.,; Bart, H.-J., Vom Einzeltropfenexperiment zur Extraktionskolonne, AiF Abschlussbericht, Forschungsgesellschaft Verfahrenstechnik e.V., Frankfurt am Main 2004.
Klinger, S., Messung und Modellierung des Spaltungs- und Koaleszenzverhaltens von Tropfen bei der Extraktion, Ph.D. thesis, RWTH Aachen University, Germany, 2008.
Klinger, S.,; Henschke, M.,; Pfennig, A., Untersuchung von Spaltungs- und Koaleszenzvorgängen in einer Messzelle mit pulsierten Füllkörpern. Chem. Ing. Techn. 2002, 74(3), 256–261.
Köhler, V., Entwicklung einer Methode zur Quantifizierung von Koaleszenzraten in Flüssig/Flüssig-Dispersionen, Ph.D. thesis, TU Graz, Austria, 1998.
Ramkrishna, D., Population Balances: Theory and Applications to Particulate Systems in Engineering; Academic Press:San Diego; 2000.
Attarakih, M., Solution Methodologies for the Population Balance Equations Describing the Hydrodynamics of Liquid-Liquid Extraction Contactors, PhD thesis, TU Kaiserslautern, 2004.
Kopriwa, N.,; Buchbender, F.,; Ayesterán, J.,; Kalem, M.,; Pfennig, A., A critical review of the application of drop population balances for the design of solvent extraction column–I. Concept of solving drop-population balances and modelling breakage and coalescence. Solvent Extr. Ion Exch. 2012, 30(7), 683–723.
Kalem, M.,; Buchbender, F.,; Pfennig, A., Simulation of hydrodynamics in RDC extraction columns using the simulation tool “ReDrop”. Chem. Eng. Res. Des. 2011, 89, 1–9.
Buchbender, F., Single-Drop-Based Modelling of Drop Residence Times in Kühni Columns, Ph.D. thesis, RWTH Aachen University, Germany, 2013.
Henschke, M.,; Waheed, A.,; Pfennig, A., Wandeinfluss auf die Sedimentationsgeschwindigkeit von Kugeln. Chem. Ing. Tech. 2000, 72, 1376–1380.
Waheed, M.A.,; Henschke, M.,; Pfennig, A., Simulating sedimentation of liquid drops. Int. J. Num. Meth. Eng. 2004, 59(14), 1821–1837.
Kalem, M.,; Altunok, M.Y.,; Pfennig, A., Sedimentation behavior of droplets for the reactive extraction of zinc with D2EHPA. AIChE J. 2010, 56(1), 160–167.
Henschke, M.,; Pfennig, A., Mass-transfer enhancement in single-drop extraction experiments. AIChE J. 1999, 45(10), 2079–2086.
Henschke, M.,; Pfennig, A., Influence of sieve trays on the mass transfer of single drops. AIChE J. 2002, 48(2), 227–234.
Haverland, H., Untersuchungen zur Tropfendispergierung in flüssigkeitspulsierten Siebboden-Extraktionskolonnen, Ph.D. thesis, TU Clausthal, Germany, 1988.
Simon, M., Koaleszenz von Tropfen und Tropfenschwärmen, Ph.D. thesis, TU Kaiserslautern, Germany, 2004.
Simon, M.,; Schmidt, S.A.,; Bart, H.-J., The droplet population balance model–estimation of breakage and coalescence. Chem. Eng. Technol. 2003, 26(7), 745–750.
Eckstein, A.,; Vogelpohl, A., Untersuchungen zur Tropfen-Tropfen-Koaleszenz. Chem. Ing. Tech. 1999, 71(5), 480–483.
Jeelani, S.A.K.,; Hartland, S., Effect of interfacial mobility on thin film drainage. J. Colloid Interface Sci. 1994, 164, 296–308.
Chen, C.-T.,; Maa, J.-R.,; Yang, Y.-M.,; Chang, C.-H., Effects of electrolytes and polarity of organic liquids on the coalescence of droplets at aqueous-organic interfaces. Surf. Sci. 1998, 406, 167–177.
Dreher, T.M.,; Glass, J.,; O’Connor, A.J.,; Stevens, G.W., Effect of rheology on coalescence rates and emulsion stability. AIChE J. 1999, 45(6), 1182–1190.
Davies, G.A.,; Jeffreys, G.V.,; Smith, D.V., Coalescence of liquid droplets - correlation of coalescence times. ISEC 71, London 1971, 385–399.
Duerr-Auster, N.,; Gunde, R.,; Mäder, R.,; Windhab, E.J., Binary coalescence of gas bubbles in the presence of a non-ionic surfactant. J. Colloid Interface Sci. 2009, 333, 579–584.
Chen, D.,; Pu, B., Studies on the binary coalescence model -II. Effects of Drop Size and interfacial tension on binary coalescence time. J. Colloid Interface Sci. 2001, 243, 433–443.
Wang, W.,; Gong, J.,; Ngan, K.H.,; Angeli, P., Effect of glycerol on the binary coalescence of water drops in stagnant oil phase. Chem. Eng. Res. Des. 2009, 87, 1640–1648.
Ban, T.,; Kawaizumi, F.,; Nii, S.,; Takahashi, K., Study of drop coalescence for liquid liquid extraction operation. Chem. Eng. Sci. 2000, 55, 5385–5391.
Ashgriz, N.,; Givi, P., Coalescence efficiencies of fuel droplets in binary collisions. Int. Comm. Heat Mass Transfer 1989, 16, 11–20.
Blaß, E.,; Löbmann, A.,; Meon, W.,; Rommel, W., Ist hydrodynamische modellierung tragfähig für die Auslegung von Schwerkraftabscheidern ohne Einbauten? Chem. Ing. Tech. 1989, 61(8), 597–610.
Kentish, S.E.,; Stevens, G.W.,; Pratt, H.R.C., Estimation of coalescence and breakage rate constants within a Kühni column. Ind. Eng. Chem. Res. 1998, 37(3), 1099–1106.
Buchbender, F.,; Onink, F.,; Meindersma, W.,; de Haan, A.,; Pfennig, A., Simulation of aromatics extraction with an ionic liquid in a pilot-plant Kühni extractor based on single-drop experiments. Chem. Eng. Sci. 2012, 82, 167–176.
Tsouris, C.,; Tavlarides, L.L., Mass-transfer effects on droplet phenomena and extraction column hydrodynamics revisted. Chem. Eng. Sci. 1993, 48, 1503–1515.
Tsouris, C.,; Kirou, V.I.,; Tavlarides, L.L., Drop size distribution and holdup profiles in a multistage extraction column. AIChE J. 1999, 40(3), 407–418.
Groothuis, H.,; Zuiderweg, F.J., Influence of mass transfer on coalescence of drops. Chem. Eng. Sci. 1960, 12, 288–289.
McFerrin, A.R.,; Davison, R.R., The effect of surface phenomena on a solvent extraction process. AIChE J. 1971, 17, 1021–1027.
Stevens, G.W.,; Pratt, H.R.C.,; Tai, D.R., Droplet coalescence in aqueous electrolyte solutions. J. Colloid Interface Sci. 1990, 136(2), 470–479.
Pfennig, A.,; Schwerin, A., Influence of electrolytes on liquid-liquid extraction. Ind. Eng. Chem. Res. 1998, 37, 3180–3188.
Soika, M.,; Pfennig, A., Extraktion–Eine Frage des Wassers? Chem. Ing. Technol. 2005, 77(7), 905–911.
Pfennig, A., Thermodynamik der Gemische; Berlin Heidelberg:Springer; 2004.
Misek, T., Recommended Systems for Liquid Extraction Studies; Rugby:The Institute of Chemical Engineers; 1978.
Misek, T.,; Berger, R.; Schröter, J. Standard Test Systems for Liquid Extraction. 2nd ed.; Rugby:The Institute of Chemical Engineers; 1985.
Coulaloglou, C.A.,; Tavlarides, L.L., Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 1977, 32, 1289–1297.
Chesters, A.K., The modelling of coalescence processes in fluid-liquid dispersions:A review of current understanding. Trans. IChemE 1991, 69, 259–270.
Liu, S.,; Li, D., Drop coalescence in turbulent dispersions. Chem. Eng. Sci. 1999, 54, 5667–5675.
Rajamani, K.,; Pate, W.T.,; Kineeberg, D.J., Time-driven and event-driven Monte Carlo simulations of liquid-liquid dispersions, a comparison. Ind. Eng. Chem. Fundam. 1986, 25, 746–752.
Sovová, H., Breakage and coalescence of drops in a batch stirred vessel–II. Comparison of model and experiments. Chem. Eng. Sci. 1981, 36, 1567–1573.
Tsouris, C.,; Tavlarides, L.L., Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 1994, 40, 395–406.
Wang, T.,; Wang, J.,; Jin, Y., Theoretical prediction of flow regime transition in bubble columns by the population balance model. Chem. Eng. Sci. 2005, 60, 6199–6209.
Wang, T.,; Wang, J.,; Jin, Y., Population balance model for gas-liquid flows:influence of bubble coalescence and breakup models. Ind. Eng. Chem. Res. 2005, 44, 7540–7549.
Liao, Y.,; Lucas, D., A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci. 2010, 65, 2851–286.
Prince, M.J.,; Blanch, H.W., Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 1990, 36, 1485–1499.
Wu, Q.,; Kim, S.,; Ishii, M.,; Beus, S.G., One-group interfacial transport in vertical bubbly flow. Int. J. Heat Mass Tranfer 1998, 41, 1103–1112.
Jacobsen, H.A.,; Lindborg, H.,; Dorao, C.A., Modeling of bubble column reactors:progress and limitations. Ind. Eng. Chem. Res. 2005, 44, 5107–5151.
Pfeifer, W.,; Schmidt, H. Literaturübersicht zu den fluiddynamischen Problemen bei der Auslegung gepulster Siebboden-Kolonnen; Karlsruhe:Kernforschungszentrum Karlsruhe GmbH; 1978.
Carnahan, N.F.,; Starling, K.E., Equation of state for nonattracting rigid spheres. J. Chem. Phys. 1969, 51(2), 635–636.
Kantak, A.A.,; Hrenya, C.M.,; Davis, R.H., Initial rates of aggregation for dilute, granular flows of wet particles. Phys. Fluids 2009, 21.
Wang, S.,; Liu, G.,; Lu, H.,; Yinghua, B.,; Ding, J.,; Zhao, Y., Prediction of radial distribution function of particles in a gas-solid fluidized bed using discrete hard-sphere model. Ind. Eng. Chem. Res. 2009, 48, 1343–1352.
Hibiki, T.,; Takamasa, T.,; Ishii, M., Interfacial area transport of bubbly flow in a small diameter pipe. J. Nucl. Sci. Technol. 2001, 38(8), 614–620.
Kalkach-Navarro, S.,; Lahey Jr., R.T.,; Drew, D.A. Analysis of the bubbly/slug flow regime transition. Nucl. Eng. Des. 1994, 151, 15–39.
Colella, D.,; Vinci, D.,; Bagatin, R.,; Masi, M.,; Bakr, E.A., A study on coalescence and breakage mechanisms in three different bubble columns. Chem. Eng. Sci. 1999, 54, 4767–4777.
Friedlander, S.K., Smoke, Dust and Haze; New York:Wiley; 1977.
Tavlarides, L.L.,; Stamatoudis, M., The analysis of interphase reactions and mass transfer in liquid-liquid dispersions. Adv. Chem. Eng. 1981, 11, 199–273.
Casamatta, G.,; Vogelpohl, A., Modelling of fluid dynamics and mass transfer in extraction columns. Ger. Chem. Eng. 1985, 8, 96–103.
Shinnar, R., On the behavior of liquid dispersions in mixing vessels. J. Fluid Mech. 1961, 10, 259–275.
Effertz, M., Experimentelle Untersuchung des Einflusses von Salzen auf das Phasentrennverhalten von MiBK+Wasser, thesis, AVT-TVT, RWTH Aachen University, Germany, 2011.
Blesinger, C., Experimentelle Untersuchung des Ioneneinflusses auf das Koaleszenzverhalten von Flüssig-Flüssig-Dispersionen zur Modellierung der Tropfengrößenverteilung in Extraktionskolonnen, thesis, AVT-TVT, RWTH Aachen University, Germany, 2011.
Ganswindt, P., Experimentelle Untersuchung des Ioneneinflusses auf das Koaleszenzverhalten im Stoffsystem MIBK+Wasser, thesis, AVT-TVT, RWTH Aachen University, Germany, 2012.
Beusch, K., Elektrolyteinfluß auf die Stabilität von Dispersionen, thesis, Lehrstuhl für Thermische Verfahrenstechnik, RWTH Aachen University, Germany, 1998.
Derjaguin, B.,; Landau, L., Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. USSR 1941, 14, 633–662.
Stieß, M., Mechanische Verfahrenstechnik 1; Berlin, Heidelberg:Springer; 1992.
Renzenbrink, J., Experimentelle Untersuchung des Ioneneinflusses auf die Sedimentation, Koaleszenz und Spaltung im Stoffsystem MIBK + Wasser zur Modellierung einer pulsierten Füllkörperextraktionskolonne, thesis, AVT-TVT, RWTH Aachen University, Germany, 2011.
Jones, D.R.,; Perttunen, C.P.,; Stuckman, B.E., Lipschitzian optimization without the Lipschitz constant. J. Opt. Theory Appl. 1993, 79(1), 157–181.
Zhu, H.,; Bogy, D.B., DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Trans. Magn. 2002, 38(5), 2168–2170.
Finkel, D.E., DIRECT Algorithm User Guide, Center for Research in Scientific Computation; Raleigh, NC; 2003. Available at: http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf. Last accessed 24 October 2016.
Zdralek, O., Experimentelle Untersuchung des Koaleszenzverhaltens von Flüssig-Flüssig-Dispersionen als Grundlage zur Beschreibung der Tropfengrößen-Verteilung in Extraktionskolonnen, thesis, AVT-TVT, RWTH Aachen University, Germany, 2010.
Kopriwa, N., Quantitative Beschreibung von Koaleszenzvorgängen in Extraktionskolonnen, Ph.D. thesis, RWTH Aachen University, Germany, 2013.
Ayesterán, J.; Kopriwa, N.; Buchbender, F.; Kalem, M.; Pfennig, A. ReDrop–A simulation tool for the design of extraction columns based on single-drop experiments. Chem. Eng. Technol. 2015, 38(10), 1894–1900.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.