[en] Our experiment aimed at studying the impact of long term tillage treatments – reduced tillage (RT) and
conventional tillage (CT), on CO2 and N2O emissions by soil and at describing the dynamics of N2O
fluxes.
Gas measurements were performed from June to October 2015 in a Belgian maize crop, with homemade
automated closed chambers, allowing continuous measurement at a high temporal resolution. After 7
years of treatment, CO2 and N2O average emissions were significantly larger in the RT parcel than in the
CT parcel. This observation was attributed to the effect of tillage on the distribution of crop residues
within the soil profile, leading to higher soil organic C and total N contents and a greater microbial
biomass in the upper layer in RT. A single N2O emission peak triggered by a sudden increase of water-
filled pore space (WFPS) was observed in the beginning of the measuring campaign. The absence of large
emission afterwards was most likely due to a decreasing availability of N as crop grew. N2O background
fluxes showed to be significantly correlated to CO2 fluxes but not to WFPS, while the influence of soil
temperature remained unclear. Our results question the suitability of reduced tillage as a “climate-smart”
practice and suggest that more experiments be conducted on conservation practices and their potent
negative effect on environment.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lognoul, Margaux ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Theodorakopoulos, Nicolas ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Hiel, Marie-Pierre ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Broux, François ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Regaert, Donat
Heinesch, Bernard ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Bodson, Bernard ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Vandenbol, Micheline ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Aubinet, Marc ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Language :
English
Title :
Impact of tillage on greenhouse gas emissions by an agricultural crop and dynamics of N2O fluxes: Insights from automated closed chamber measurements
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abdalla, M., Osborne, B., Lanigan, G., Forristal, D., Williams, M., Smith, P., Jones, M.B., Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29 (2013), 199–209, 10.1111/sum.12030.
Alvarez, R., A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. 21 (2005), 38–52, 10.1079/SUM2005291.
Anderson, E.L., Tillage and N fertilization effects on maize root growth and root: shoot ratio. Plant Soil 108 (1988), 245–251.
Ball, B.C., Crichton, I., Horgan, G.W., Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil Tillage Res. 101 (2008), 20–30, 10.1016/j.still.2008.05.012.
Ball, B.C., Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. Eur. J. Soil Sci. 64 (2013), 357–373, 10.1111/ejss.12013.
Bateman, E.J., Baggs, E.M., Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fert. Soils 41 (2005), 379–388, 10.1007/s00374-005-0858-3.
Beare, M.H., Gregorich, E.G., St-Georges, P., Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem. 41 (2009), 611–621, 10.1016/j.soilbio.2008.12.024.
Biver, S., Vandenbol, M., Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40 (2013), 191–200, 10.1007/s10295.
Bouwman, A.F., Boumans, J.M., Batjes, N.H., Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem. Cycles, 16, 2002, 10.1029/2001gb001811.
Bracker, G., Conrad, R., Diversity, structure, and size of N2O-producing microbial communities in soils—what matters for their functioning?. Adv. Appl. Microbiol. 75 (2011), 33–70.
Bremner, J.M., Mulvaney, C., 1982. Nitrogen-total. Methods of soil analysis Part 2: Chemical and microbiological properties.
Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 368, 2013, 10.1098/rstb.2013.0122 20130122.
Buysse, P., Aubinet, M., La respiration hétérotrophe dans les sols agricoles: description des facteurs importants et comparaison de modèles semi-mécanistes existants. Biotechnol. Agron. Soc. Environ. 14 (2010), 707–717.
Castellano, M.J., Schmidt, J.P., Kaye, J.P., Walker, C., Graham, C.B., Lin, H., Dell, C.J., Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Global Change Biol. 16 (2010), 2711–2720, 10.1111/j.1365-2486.2009.02116.x.
Chatskikh, D., Olesen, J.E., Hansen, E.M., Elsgaard, L., Petersen, B.M., Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agric. Ecosyst. Environ. 128 (2008), 117–126, 10.1016/j.agee.2008.05.010.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
Conrad, R., Soil microorganisms as controllers of atmospheric trace gases (H2, CO,CH4, OCS, N2O, and NO). Microbiol. Rev. 60 (1996), 609–640.
Copec, K., Filipovic, D., Husnjak, S., Kovacev, I., Kosutic, S., Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61 (2015), 213–219, 10.17221/156/2015-PSE.
D'Haene, K., Van Den Bossche, A., Vandenbruwane, J., De Neve, S., Gabriels, D., Hofman, G., The effect of reduced tillage on nitrous oxide emissions of silt loam soils. Biol. Fertil. Soils 45 (2008), 213–217, 10.1007/s00374-008-0330-2.
D'Haene, K., Sleutel, S., De Neve, S., Gabriels, D., Hofman, G., The effect of reduced tillage agriculture on carbon dynamics in silt loam soils. Nutr. Cycl. Agroecosyst. 84 (2009), 249–265, 10.1007/s10705-008-9240-9.
Del Grosso, S.J., Parton, W.J., Mosier, a. R., Ojima, D.S., Kulmala, a.E., Phongpan, S., General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem. Cycles 14 (2000), 1045–1060, 10.1029/1999GB001225.
Dobbie, K.E., McTaggart, I.P., Smith, K.a., Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J. Geophys. Res. 104 (1999), 26891–26899, 10.1029/1999JD900378.
Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W., McLaughlin, N.B., Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Sci. Soc. Am. J. 70 (2006), 570–581, 10.2136/sssaj2005.0042.
Flechard, C.R., Ambus, P., Skiba, U., Rees, R.M., Hensen, A., van Amstel, A., van den Pol-van Dasselaar, A., Soussana, J.F., Jones, M., Clifton-Brown, J., Raschi, A., Horvath, L., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J., Calanca, P., Thalman, E., Pilegaard, K., Di Marco, C., Campbell, C., Nemitz, E., Hargreaves, K.J., Levy, P.E., Ball, B.C., Jones, S.K., van de Bulk, W.C.M., Groot, T., Blom, M., Domingues, R., Kasper, G., Allard, V., Ceschia, E., Cellier, P., Laville, P., Henault, C., Bizouard, F., Abdalla, M., Williams, M., Baronti, S., Berretti, F., Grosz, B., Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric. Ecosyst. Environ. 121 (2007), 135–152, 10.1016/j.agee.2006.12.024.
Goossens, A., Visscher, A., Boeckx, P., Van Cleemput, O., Two year field study on the emission of N2O form coarse and middle-textured Belgian soils with different land use. Nutr. Cycl. Agroecosyst. 60 (2001), 23–34.
Hénault, C., Grossel, A., Mary, B., Roussel, M., Léonard, J., Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22 (2012), 426–433, 10.1016/S1002-0160(12)60029-0.
Harrison-Kirk, T., Beare, M.H., Meenken, E.D., Condron, L.M., Soil organic matter and texture affect responses to dry/wet cycles: effects on carbon dioxide and nitrous oxide emissions. Soil Biol. Biochem. 57 (2013), 43–55, 10.1016/j.soilbio.2012.10.008.
Holland, J.M., The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ. 103 (2004), 1–25, 10.1016/j.agee.2003.12.018.
Jahangir, M.M.R., Roobroeck, D., Van Cleemput, O., Boeckx, P., Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biol. Fertil. Soils 47 (2011), 753–766, 10.1007/s00374-011-0580-2.
Kainiemi, V., Arvidsson, J., Kätterer, T., Effects of autumn tillage and residue management on soil respiration in a long-term field experiment in Sweden. J. Plant Nutr. Soil Sci. 178 (2015), 189–198, 10.1002/jpln.201400080.
Kandeler, E., Tscherko, D., Spiegel, H., Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. Biol. Fertil. Soils 28 (1999), 343–351, 10.1007/s003740050502.
Kemmitt, S.J., Wright, D., Goulding, K.W.T., Jones, D.L., pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38 (2006), 898–911, 10.1016/j.soilbio.2005.08.006.
Koga, N., Nitrous oxide emissions under a four-year crop rotation system in northern Japan: impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Sci. Plant Nutr. 59 (2013), 56–68, 10.1080/00380768.2012.733870.
Kroon, P.S., Hensen, A., Van Den Bulk, W.C.M., Jongejan, P.A.C., Vermeulen, A.T., The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr. Cycl. Agroecosyst. 82 (2008), 175–186, 10.1007/s10705-008-9179-x.
Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N.J., Martikainen, P.J., Alm, J., Wilmking, M., CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4 (2007), 1005–1025, 10.5194/bgd-4-2279-2007.
Lampurlanés, J., Angas, P., Cantero-Martinez, C., Root growth: soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Res. 69 (2001), 27–40.
Laville, P., Lehuger, S., Loubet, B., Chaumartin, F., Cellier, P., Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agric. For. Meteorol. 151 (2011), 228–240, 10.1016/j.agrformet.2010.10.008.
Liu, B., Mørkved, P.T., Frostegård, Å., Bakken, L.R., Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72 (2010), 407–417, 10.1111/j.1574-6941.2010.00856.x.
Longdoz, B., Yernaux, M., Aubinet, M., Soil CO2 efflux measurements in mixed forest: impact of chamber disturbance, spatial variability and seasonal evolution. Global Change Biol. 6 (2000), 907–917, 10.1046/j.1365-2486.2000.00369.x.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., Van Ommen, T., Smith, A., Elkins, J., Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33 (2006), 2000–2003, 10.1029/2006GL026152.
Matthias, D., Yarger, D.N., Weinbeck, R.S., A numerical evaluation of chamber methods for determining gas fluxes. Geophys. Res. Lett. 5 (1978), 765–768.
Mikha, M.M., Rice, C.W., Milliken, G.A., Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37 (2005), 339–347, 10.1016/j.soilbio.2004.08.003.
Molodovskaya, M., Singurindy, O., Richards, B.K., Warland, J., Johnson, M.S., Steenhuis, T.S., Temporal variability of nitrous oxide from fertilized croplands: hot moment analysis. Soil Sci. Soc. Am. J. 76 (2012), 1728–1740, 10.2136/sssaj2012.0039.
Mosquera, J., Hol, J., Rappoldt, C., Dolfing, J., Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils. Anim. Sci. Group Report 28 (2007), 1–42.
Mutegi, J.K., Munkholm, L.J., Petersen, B.M., Hansen, E.M., Petersen, S.O., Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol. Biochem. 42 (2010), 1701–1711, 10.1016/j.soilbio.2010.06.004.
NOAA (National Oceanic and Atmospheric Administration), 2015. Monthly mean N2O concentrations for Barrow, Alaska; Mauna Loa, Hawaii; and the South Pole [WWW Document – Accessed on June 4, 2015].
Negassa, W., Price, R.F., Basir, A., Snapp, S.S., Kravchenko, A., Cover crop and tillage systems effect on soil CO2 and N2O fluxes in contrasting topographic positions. Soil Tillage Res. 154 (2015), 64–74, 10.1016/j.still.2015.06.015.
Nelson, D., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis Part 2: Chemical and microbiological properties.
Norman, J.M., Garcia, R., Verma, S.B., Soil surface CO2 fluxes and the carbon budget of a grassland. J. Geophys. Res. 97 (1992), 18845–18853.
Oades, J.M., Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76 (1984), 319–337, 10.1007/BF02205590.
Plaza-Bonilla, D., Álvaro-Fuentes, J., Arrúe, J.L., Cantero-Martínez, C., Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agric. Ecosyst. Environ. 189 (2014), 43–52, 10.1016/j.agee.2014.03.023.
Portmann, R.W., Daniel, J.S., Ravishankara, a. R., Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos. Trans. R. Soc. B: Biol. Sci. 367 (2012), 1256–1264, 10.1098/rstb.2011.0377.
Rabot, E., Lacoste, M., Henault, C., Cousin, I., Using X-ray computed tomography to describe the dynamics of nitrous oxide emissions during soil drying. Vadose Zone J. 14 (2015), 1–33, 10.2136/vzj2014.12.0177.
Rabot, E., Highlighting the Role of Soil Hydric History on Nitrous Oxide Emissions. 2014, INRA Orléans.
Rees, R.M., Augustin, J., Alberti, G., Ball, B.C., Boeckx, P., Cantarel, a., Castaldi, S., Chirinda, N., Chojnicki, B., Giebels, M., Gordon, H., Grosz, B., Horvath, L., Juszczak, R., Kasimir Klemedtsson, Å., Klemedtsson, L., Medinets, S., Machon, a., Mapanda, F., Nyamangara, J., Olesen, J.E., Reay, D.S., Sanchez, L., Sanz Cobena, a., Smith, K. a., Sowerby, a., Sommer, M., Soussana, J.F., Stenberg, M., Topp, C.F.E., Van Cleemput, O., Vallejo, a., Watson, C. a., Wuta, M., Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments. Biogeosciences 10 (2013), 2671–2682, 10.5194/bg-10-2671-2013.
Robertson, G.P., Groffman, P.M., Nitrogen transformations. Paul, E.A., (eds.) Soil Microbiology, Chemistry, and Ecology, 2007, Springer, New York USA, 341–364.
Senbayram, M., Chen, R., Budai, A., Bakken, L., Dittert, K., N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosyst. Environ. 147 (2012), 4–12, 10.1016/j.agee.2011.06.022.
Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosiers, A.R., Paustian, K., The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol. 10 (2004), 155–160, 10.1111/j. 1529–8817.2003.00730.x.
Smith, K. a., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, a., Exchange of greenhousegases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 54 (2003), 779–791, 10.1046/j.1365-2389.2003.00567.x.
Stehfest, E., Bouwman, L., N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 74 (2006), 207–228, 10.1007/s10705-006-9000-7.
Suleau, M., Debacq, A., Dehaes, V., Aubinet, M., Wind velocity perturbation of soil respiration measurements using closed dynamic chambers. Eur. J. Soil Sci. 60 (2009), 515–524, 10.1111/j.1365-2389.2009.01141.x.
Theodorakopoulos, N., Lognoul, M., Degrune, F., Broux, F., Regaert, D., Muys, C., Heinesch, B., Bodson, B., Aubinet, M., Vandenbol, M., in press. Increased expression of bacterial amoA during an N2O emission peak in an agricultural field. Agric. Ecosyst. Environ., 2016, N2, 10.1016/j.agee.2016.12.002 in press.
Ussiri, D., Lal, R., The Role of Nitrous Oxide on Climate Change, In: Soil Emission of Nitrous Oxide and Its Mitigation. 2013, Springer, 1–28, 10.1007/978-94-007-5364-8.
Van Zwieten, L., Kimber, S.W.L., Morris, S.G., Singh, B.P., Grace, P.R., Scheer, C., Rust, J., Downie, A.E., Cowie, A.L., Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci. Total Environ. 465 (2013), 279–287, 10.1016/j.scitotenv.2013.02.054.
Velthof, G., Kuikman, P., Oenema, O., Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37 (2003), 221–230, 10.1007/s00374-003-0589-2.
Vian, J.F., Peigne, J., Chaussod, R., Roger-Estrade, J., Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use and Management 25 (2009), 1–10, 10.1111/j.1475-2743.2008.00176.x.
Wang, W., Dalal, R.C., Nitrogen management is the key for low-emission wheat production in Australia: a life cycle perspective. Eur. J. Agron. 66 (2015), 74–82, 10.1016/j.eja.2015.02.007.
Xu, X., Tian, H., Hui, D., Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biol. 14 (2008), 1651–1660, 10.1111/j.1365-2486.2008.01595.x.
Zhou, J., Bruns, M.A., Tiedje, J.M., DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62 (1996), 316–322.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.