Abe-Ouchi, A., T. Segawa, and F. Saito (2007), Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the Ice Age cycle, Clim. Past, 3, 423–438.
Barker, S., G. Knorr, M. J. Vautravers, P. Diz, and L. C. Skinner (2010), Extreme deepening of the Atlantic overturning circulation during deglaciation, Nat. Geosci., 3, 567–571.
Bé, M., V. Chisté, C. Dulieu, X. Mougeot, V. Chechev, F. Kondev, A. Nichols, X. Huang, and B. Wang (2013), Table of Radionuclides (Comments on Evaluations), Monographie BIPM-5, vol. 7, Bureau International des Poids et Mesures, Pavillon de Breteuil, Sèvres, France.
Bemis, B. E., H. J. Spero, D. W. Lea, and J. Bijma (2000), Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera), Mar. Micropaleontol., 38, 213–228.
Bird, M. I., J. Lloyd, and G. D. Farquhar (1994), Terrestrial carbon storage at the LGM, Nature, 371, 566.
Böhm, E., J. Lippold, M. Gutjahr, M. Frank, P. Blaser, B. Antz, J. Fohlmeister, N. Frank, M. B. Andersen, and M. Deininger (2015), Strong and deep Atlantic meridional overturning circulation during the last glacial cycle, Nature, 517, 73–76.
Bouttes, N., D. Paillard, D. M. Roche, V. Brovkin, and L. Bopp (2011), Last Glacial Maximum CO2 and δ13C successfully reconciled, Geophys. Res. Lett., 38, L02705, doi:10.1029/2010GL044499.
Brovkin, V., A. Ganopolski, and Y. Svirezhev (1997), A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Modell., 101, 251–261.
Burke, A., and L. F. Robinson (2012), The Southern Ocean's role in carbon exchange during the last deglaciation, Science, 335, 557–561.
Ciais, P., et al. (2012), Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum, Nat. Geosci., 5, 74–79, doi:10.1038/NGE01324.
Cook, M. S., and L. D. Keigwin (2015), Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages, Paleoceanography, 30, 174–195, doi:10.1002/2014PA002649.
Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.
Davies-Walczak, M., A. C. Mix, J. S. Stoner, J. R. Southon, M. Cheseby, and C. Xuan (2014), Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources, Earth Planet. Sci. Lett., 397, 57–66.
Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel (1988), Deepwater source variations during the last climate cycle and their impact on the global deepwater circulation, Paleoceanography, 3, 343–360.
Francois, L. M., Y. Goddéris, P. Warnant, G. Ramstein, N. de Noblet, and S. Lorenz (1999), Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times, Chem. Geol., 159, 163–189.
Freeman, E., L. C. Skinner, A. Tisserand, T. Dokken, A. Timmermann, L. Menviel, and T. Friedrich (2015), An Atlantic Pacific ventilation seesaw across the last deglaciation, Earth Planet. Sci. Lett., 424, 237–244.
Freeman, E., L. C. Skinner, C. Waelbroeck, and D. Hodell (2016), Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum, Nat. Commun., 7, 11998, doi:10.1038/ncomms11998.
Freeman, K. H., and J. M. Hayes (1992), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185–198.
Friedrich, T., A. Timmermann, T. Stichel, and K. Pahnke (2014), Ocean circulation reconstructions from εNd: A model-based feasibility study, Paleoceanography, 29, 1003–1023, doi:10.1002/2014PA002658.
Galbraith, E. D., S. L. Jaccard, T. F. Pedersen, D. M. Sigman, G. H. Haug, M. Cook, J. R. Southon, and R. Francois (2007), Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890–894.
Gebbie, G. (2014), How much did Glacial North Atlantic Water shoal?, Paleoceanography, 19, 190–209, doi:10.1002/2013PA002557.
Gherardi, J. M., L. Labeyrie, S. Nave, R. Francois, J. F. McManus, and E. Cortijo (2009), Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region, Paleoceanography, 24, PA2204, doi:10.1029/2008PA001696.
Golledge, N. R., L. Carter, L. Menviel, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy (2014), Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning, Nat. Commun., 5, 5107, doi:10.1038/ncomms6107.
Gong, X., X. Zhang, G. Lohmann, W. Wei, X. Zhang, and M. Pfeiffer (2015), Higher Laurentide and Greenland ice sheets strengthen the North Atlantic Ocean circulation, Clim. Dyn., 45, 139–150, doi:10.1007/s00382-015-2502-8.
Goosse, H., et al. (2010), Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633.
Hesse, T., M. Butzin, T. Bickert, and G. Lohmann (2011), A model-data comparison of δ13C in the glacial Atlantic Ocean, Paleoceanography, 26, PA3220, doi:10.1029/2010PA002085.
Hesse, T., D. Wolf-Gladrow, G. Lohmann, J. Bijma, A. Mackensen, and R. E. Zeebe (2014), Modelling δ13C in benthic foraminifera: Insights from model sensitivity experiments, Mar. Micropaleontol., 112, 50–61.
Howe, J. N. W., A. M. Piotrowski, T. L. Noble, S. Mulitza, C. M. Chiessi, and G. Bayon (2016), North Atlantic deep water production during the Last Glacial Maximum, Nat. Commun., 7, 11765, doi:10.1038/ncomms11765.
Ito, T., and M. J. Follows (2005), Preformed phosphate, soft tissue pump and atmospheric CO2, J. Mar. Res., 63, 813–839.
Jaccard, S. L., E. D. Galbraith, D. M. Sigman, G. H. Haug, R. Francois, T. F. Pedersen, P. Dulski, and H. R. Thierstein (2009), Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool, Earth Planet. Sci. Lett., 277, 156–165.
Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and P. J. Valdes (2004), Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cycles, 18, GB2002, doi:10.1029/2003GB002156.
Keigwin, L. D. (2004), Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic, Paleoceanography, 19, PA4012, doi:10.1029/2004PA001029.
Keigwin, L. D., and M. A. Schlegel (2002), Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic, Geochem. Geophys. Geosyst., 3(6), 1034, doi:10.1029/2001GC000283.
Kohfeld, K. C., C. Le Quere, S. Harrison, and R. Anderson (2005), Role of marine biology in glacial-interglacial CO2 cycles, Science, 308, 74–78.
Köhler, P., and H. Fischer (2004), Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition, Global Planet. Change, 43, 33–55.
Kovaltsov, G. A., A. Mishev, and I. G. Usoskin (2012), A new model of cosmogenic production of radiocarbon 14C in the atmosphere, Earth Planet. Sci. Lett., 337–338, 114–120.
Lippold, J., Y. Luo, R. Francois, S. E. Allen, J. Gherardi, S. Pichat, B. Hickey, and H. Schulz (2012), Strength and geometry of the glacial Atlantic Meridional overturning circulation, Nat. Geosci., 5, 813–816.
Lund, D. C., A. C. Tessin, J. L. Hoffman, and A. Schmittner (2015), Southwest Atlantic water mass evolution during the last deglaciation, Paleoceanography, 30, 477–494, doi:10.1002/2014PA002657.
Lynch-Stieglitz, J., W. B. Curry, and N. Slowey (1999), Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum, Nature, 402, 644–648.
Lynch-Stieglitz, J., W. B. Curry, D. W. Oppo, U. S. Ninneman, C. D. Charles, and J. Munson (2006), Meridional overturning circulation in the South Atlantic at the Last Glacial Maximum, Geochem. Geophys. Geosyst., 7, Q10N03, doi:10.1029/2005GC001226.
Mackensen, A., H.-W. Hubberten, T. Bickert, G. Fischer, and D. K. Fütterer (1993), The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: Implications for glacial ocean circulation models, Paleoceanography, 8, 587–610.
Marchitto, T. M., and W. S. Broecker (2006), Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca, Geochem. Geophys. Geosyst., 7, Q12003, doi:10.1029/2006GC001323.
Matsumoto, K., T. Oba, J. Lynch-Stiegliz, and H. Yamamoto (2002), Interior hydrography and circulation of the glacial Pacific Ocean, Quat. Sci. Revi., 21, 1693–1704.
Menviel, L., A. Timmermann, A. Mouchet, and O. Timm (2008), Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies, Paleoceanography, 23, PA4201, doi:10.1029/2007PA001604.
Menviel, L., A. Timmermann, O. Timm, and A. Mouchet (2011), Deconstructing the last Glacial Termination: The role of millennial and orbital-scale forcings, Quat. Sci. Rev., 30, 1155–1172.
Menviel, L., F. Joos, and S. P. Ritz (2012), Modeling atmospheric CO2, stable carbon isotope and marine carbon cycle changes during the last glacial-interglacial cycle, Quat. Sci. Rev., 56, 46–68.
Menviel, L., M. H. England, K. J. Meissner, A. Mouchet, and J. Yu (2014), Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events, Paleoceanography, 29, 58–70, doi:10.1002/2013PA002542.
Menviel, L., A. Mouchet, K. J. Meissner, F. Joos, and M. H. England (2015), Impact of oceanic circulation changes on atmospheric δ13CO2, Global Biogeochem. Cycles, 29, 1944–1961, doi:10.1002/2015GB005207.
Mook, W. G., J. C. Bommerson, and W. H. Staverman (1974), Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169–176.
Mouchet, A. (2011), A 3D model of ocean biogeochemical cycles and climate sensitivity studies, PhD thesis, Université de Liège, Lìege, Belgium. [Available at http://hdl.handle.net/2268/98995.]
Mouchet, A. (2013), The ocean bomb radiocarbon inventory revisited, Radiocarbon, 55, 1580–1594.
Mouchet, A., and L. M. Francois (1996), Sensitivity of a Global Oceanic Carbon Cycle Model to the circulation and to the fate of organic matter: Preliminary results, Phys. Chem. Earth, 21, 511–516.
Munhoven, G. (2002), Glacial interglacial changes of continental weathering: Estimates of the related CO2 and HCO3− flux variations and their uncertainties, Global Planet. Change, 33, 155–176.
Okazaki, Y., A. Timmermann, L. Menviel, N. Harada, A. Abe-Ouchi, M. Chikamoto, A. Mouchet, and H. Asahi (2010), Deep water formation in the North Pacific during the Last Glacial Termination, Science, 329, 200–204.
Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto, E. C. Brady, A. Abe-Ouchi, M. Crucifix, S. Murakami, and S. L. Weber (2007), Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints, Geophys. Res. Lett., 34, L12706, doi:10.1029/2007GL029475.
Peterson, C. D., L. E. Lisiecki, and J. V. Stern (2014), Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records, Paleoceanography, 29, 549–563, doi:10.1002/2013PA002552.
De Pol-Holz, R., L. Keigwin, J. Southon, D. Hebbeln, and M. Mohtadi (2010), No signature of abyssal carbon in intermediate waters off Chile during deglaciation, Nat. Geosci., 3, 192–195, doi:10.1038/NGEO745.
Pollard, D., and R. M. DeConto (2009), Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329–332.
Rae, J. W. B., M. Sarnthein, G. L. Foster, A. Ridgwell, P. M. Grootes, and T. Elliott (2014), Deep water formation in the North Pacific and deglacial CO2 rise, Paleoceanography, 29, 645–667, doi:10.1002/2013PA002570.
Ritz, S. P., T. F. Stocker, and S. Müller (2008), Modeling the effect of abrupt ocean circulation change on marine reservoir age, Earth Planet. Sci. Lett., 268, 202–211.
Ronge, T. A., R. Tiedemann, F. Lamy, P. Köhler, B. V. Alloway, R. De Pol-Holz, K. Pahnke, J. Southon, and L. Wacker (2016), Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool, Nat. Commun., 7, 11487, doi:10.1038/ncomms11487.
Rose, K. A., E. L. Sikes, T. P. Guilderson, P. Shane, T. M. Hill, R. Zahn, and H. J. Spero (2010), Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release, Nature, 466, 1093–1097, doi:10.1038/nature09288.
Roth, R., and F. Joos (2013), A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties, Clim. Past, 9, 1879–1909.
Sarnthein, M., K. Winn, S. J. A. Jung, J. C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen (1994), Changes in east Atlantic deep water circulation over the last 30,000 years: Eight time slice reconstructions, Paleoceanography, 9, 209–269.
Sarnthein, M., B. Schneider, and P. M. Grootes (2013), Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614.
Schmitt, J., et al. (2012), Carbon isotope constraints on the deglacial CO2 rise from ice cores, Science, 136, 711–714.
Schmittner, A., and C. J. Somes (2016), Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump, Paleoceanography, 31, 669–693, doi:10.1002/2015PA002905.
Shackleton, N. J. (1977), Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycle, in The Fate of Fossil Fuel CO2 in the Oceans, edited by N. R. Andersen and A. Malahoff, pp. 401–428, Plenum, New York.
Siani, G., E. Michel, R. De Pol-Holz, T. DeVries, F. Lamy, M. Carel, G. Isguder, F. Dewilde, and A. Lourantou (2013), Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation, Nat. Commun., 4, 2758, doi:10.1038/ncomms3758.
Siegenthaler, U., and K. O. Munnich (1981), 13C/12C fractionation during CO2 transfer from air to sea, in SCORE 16: Carbon Cycle Modelling, edited by B. Bolin, pp. 249–257, Wiley, Chichester, England.
Sigman, D. M., and E. A. Boyle (2000), Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869.
Sikes, E. L., C. R. Samson, T. P. Guilderson, and W. R. Howard (2000), Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation, Nature, 405, 555–559.
Skinner, L. C., S. Fallon, C. Waelbroeck, E. Michel, and S. Barker (2010), Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147–1151.
Skinner, L. C., C. Waelbroeck, A. E. Scrivner, and S. Fallon (2014), Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation, Proc. Natl. Acad. Sci. U.S.A., 111, 5480–5484.
Skinner, L. C., I. N. McCave, L. Carter, S. Fallon, A. E. Scrivner, and F. Primeau (2015), Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period, Earth Planet. Sci. Lett., 411, 45–52.
Spero, H. J., I. Lerche, and D. F. Williams (1991), Opening the carbon isotope “vital effect” black box 2, quantitative model for interpreting foraminiferal carbon isotope data, Paleoceanography, 6, 639–655.
Spero, H. J., J. Bijma, D. W. Lea, and B. E. Bemis (1997), Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497–500.
Tagliabue, A., L. Bopp, D. M. Roche, N. Bouttes, J.-C. Dutay, R. Alkama, M. Kageyama, E. Michel, and D. Paillard (2009), Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the Last Glacial Maximum, Clim. Past, 5, 695–706.
Thornalley, D. J. R., S. Barker, W. S. Broecker, H. Elderfield, and I. N. McCave (2011), The deglacial evolution of North Atlantic deep convection, Science, 331, 202–205.
Toggweiler, J. R. (1999), Variation of atmospheric CO2 by ventilation of the ocean's deepest water, Paleoceanography, 14, 571–588.
Toggweiler, J. R., J. L. Russell, and S. R. Carson (2006), Midlatitude westerlies, atmospheric CO2, and climate change during ice ages, Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.
Tschumi, T., F. Joos, M. Gehlen, and C. Heinze (2011), Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise, Clim. Past, 7, 771–800.
Ullman, D. J., A. N. Legrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi (2014), Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507.
Vance, D., D. A. H. Teagle, and G. L. Foster (2009), Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets, Nature, 458, 493–496.
Weber, S. L., S. S. Drijfhout, A. Abe-Ouchi, M. Crucifix, M. Eby, A. Ganopolski, S. Murakami, B. Otto-Bliesner, and W. R. Peltier (2007), The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations, Clim. Past, 3, 51–64.
Weldeab, S., T. Friedrich, A. Timmermann, and R. R. Schneider (2016), Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas, Paleoceanography, 31, 1070–1082, doi:10.1002/2016PA002957.
Wunsch, C. (2003), Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum, Quat. Sci. Rev., 22, 371–385.
Yu, J., H. Elderfield, and A. Piotrowski (2008), Seawater carbonate ion-δ13C systematics and application to glacial-interglacial North Atlantic ocean circulation, Earth Planet. Sci. Lett., 271, 209–220.
Yu, J., R. F. Anderson, Z. Jin, J. W. B. Rae, B. N. Opdyke, and S. M. Eggins (2013), Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle, Quat. Sci. Rev., 76, 39–52.