Quantum entanglement; fidelity; symmetric states; LU class; SLOCC class
Abstract :
[en] For two symmetric quantum states one may be interested in maximizing the overlap under local operations applied to one of them. The question arises whether the maximal overlap can be obtained by applying the same local operation to each party. We show that for two symmetric multiqubit states and local unitary transformations this is the case; the maximal overlap can be reached by applying the same unitary matrix everywhere. For local invertible operations (stochastic local operations assisted by classical communication equivalence), however, we present counterexamples, demonstrating that considering the same operation everywhere is not enough.
Disciplines :
Physics
Author, co-author :
Neven, Antoine ; Université de Liège > Unité de Recherche CESAM > Spectroscopie atomique et Physique des atomes froids
Mathonet, Pierre ; Université de Liège > Département de mathématique > Géométrie différentielle
Gühne, Otfried; Universität Siegen > Naturwissenschaftlich-Technische Fakultät,
Bastin, Thierry ; Université de Liège > Unité de Recherche CESAM > Spectroscopie atomique et Physique des atomes froids
Language :
English
Title :
Quantum fidelity of symmetric multipartite states
Publication date :
28 November 2016
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society
Volume :
94
Pages :
052332
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
R. Jozsa, J. Mod. Opt. 41, 2315 (1994). JMOPEW 0950-0340 10.1080/09500349414552171
D. J. C. Bures, Trans. Am. Math. Soc. 135, 199 (1969). 10.2307/1995012
M. Hübner, Phys. Lett. A 163, 239 (1992); PYLAAG 0375-9601 10.1016/0375-9601(92)91004-B
M. Hübner, Phys. Lett. A 179, 226 (1992). PYLAAG 0375-9601 10.1016/0375-9601(93)90668-P
H.-J. Sommers and K. Życzkowski, J. Phys. A: Math. Gen. 36, 10083 (2003). JPHAC5 0305-4470 10.1088/0305-4470/36/39/308
T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003). PLRAAN 1050-2947 10.1103/PhysRevA.68.042307
Y. Huang, New J. Phys. 16, 033027 (2014). NJOPFM 1367-2630 10.1088/1367-2630/16/3/033027
R. Hübener, M. Kleinmann, T.-C. Wei, C. González-Guillén, and O. Gühne, Phys. Rev. A 80, 032324 (2009). PLRAAN 1050-2947 10.1103/PhysRevA.80.032324
A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.87.040401
S. Niekamp, M. Kleinmann, and O. Gühne, Phys. Rev. A 82, 022322 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.82.022322
W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000). PLRAAN 1050-2947 10.1103/PhysRevA.62.062314
C. D. Cenci, D. W. Lyons, and S. N. Walck, arXiv:1011.5229;
Theory of Quantum Computation, Communication and Cryptography, edited by D. Bacon, M. Martin-Delgado, and M. Roetteler, Lecture Notes in Computer Science Vol. 6745 (Springer, Berlin, 2014), p. 198.
P. Migdał, J. Rodriguez-Laguna, and M. Lewenstein, Phys. Rev. A 88, 012335 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.88.012335
L. Hörmander, Math. Scand. 2, 55 (1954). MTSCAN 0025-5521 10.7146/math.scand.a-10395
O. D. Kellogg, Math. Z. 27, 55 (1928). MAZEAX 0025-5874 10.1007/BF01171085
P. Mathonet, S. Krins, M. Godefroid, L. Lamata, E. Solano, and T. Bastin, Phys. Rev. A 81, 052315 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.81.052315
T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, and E. Solano, Phys. Rev. Lett. 103, 070503 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.070503
T. Bastin, P. Mathonet, and E. Solano, Phys. Rev. A 91, 022310 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.91.022310
P. Gawron, Z. Puchała, J. A. Miszczak, Ł. Skowronek, and K. Życzkowski, J. Math. Phys. 51, 102204 (2010). JMAPAQ 0022-2488 10.1063/1.3496901
Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, M.-D. Choi, and K. Życzkowski, Linear Algebra Appl. 434, 327 (2011). LAAPAW 0024-3795 10.1016/j.laa.2010.08.026