Quantum entanglement; fidelity; symmetric states; LU class; SLOCC class
Abstract :
[en] For two symmetric quantum states one may be interested in maximizing the overlap under local operations applied to one of them. The question arises whether the maximal overlap can be obtained by applying the same local operation to each party. We show that for two symmetric multiqubit states and local unitary transformations this is the case; the maximal overlap can be reached by applying the same unitary matrix everywhere. For local invertible operations (stochastic local operations assisted by classical communication equivalence), however, we present counterexamples, demonstrating that considering the same operation everywhere is not enough.
Disciplines :
Physics
Author, co-author :
Neven, Antoine ; Université de Liège > Unité de Recherche CESAM > Spectroscopie atomique et Physique des atomes froids
Mathonet, Pierre ; Université de Liège > Département de mathématique > Géométrie différentielle
Gühne, Otfried; Universität Siegen > Naturwissenschaftlich-Technische Fakultät,
Bastin, Thierry ; Université de Liège > Unité de Recherche CESAM > Spectroscopie atomique et Physique des atomes froids
Language :
English
Title :
Quantum fidelity of symmetric multipartite states
Publication date :
28 November 2016
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society
Volume :
94
Pages :
052332
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
R. Jozsa, J. Mod. Opt. 41, 2315 (1994). JMOPEW 0950-0340 10.1080/09500349414552171
D. J. C. Bures, Trans. Am. Math. Soc. 135, 199 (1969). 10.2307/1995012
M. Hübner, Phys. Lett. A 163, 239 (1992); PYLAAG 0375-9601 10.1016/0375-9601(92)91004-B
M. Hübner, Phys. Lett. A 179, 226 (1992). PYLAAG 0375-9601 10.1016/0375-9601(93)90668-P
H.-J. Sommers and K. Życzkowski, J. Phys. A: Math. Gen. 36, 10083 (2003). JPHAC5 0305-4470 10.1088/0305-4470/36/39/308
T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003). PLRAAN 1050-2947 10.1103/PhysRevA.68.042307
Y. Huang, New J. Phys. 16, 033027 (2014). NJOPFM 1367-2630 10.1088/1367-2630/16/3/033027
R. Hübener, M. Kleinmann, T.-C. Wei, C. González-Guillén, and O. Gühne, Phys. Rev. A 80, 032324 (2009). PLRAAN 1050-2947 10.1103/PhysRevA.80.032324
A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.87.040401
S. Niekamp, M. Kleinmann, and O. Gühne, Phys. Rev. A 82, 022322 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.82.022322
W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000). PLRAAN 1050-2947 10.1103/PhysRevA.62.062314
C. D. Cenci, D. W. Lyons, and S. N. Walck, arXiv:1011.5229;
Theory of Quantum Computation, Communication and Cryptography, edited by D. Bacon, M. Martin-Delgado, and M. Roetteler, Lecture Notes in Computer Science Vol. 6745 (Springer, Berlin, 2014), p. 198.
P. Migdał, J. Rodriguez-Laguna, and M. Lewenstein, Phys. Rev. A 88, 012335 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.88.012335
L. Hörmander, Math. Scand. 2, 55 (1954). MTSCAN 0025-5521 10.7146/math.scand.a-10395
O. D. Kellogg, Math. Z. 27, 55 (1928). MAZEAX 0025-5874 10.1007/BF01171085
P. Mathonet, S. Krins, M. Godefroid, L. Lamata, E. Solano, and T. Bastin, Phys. Rev. A 81, 052315 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.81.052315
T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, and E. Solano, Phys. Rev. Lett. 103, 070503 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.070503
T. Bastin, P. Mathonet, and E. Solano, Phys. Rev. A 91, 022310 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.91.022310
P. Gawron, Z. Puchała, J. A. Miszczak, Ł. Skowronek, and K. Życzkowski, J. Math. Phys. 51, 102204 (2010). JMAPAQ 0022-2488 10.1063/1.3496901
Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, M.-D. Choi, and K. Życzkowski, Linear Algebra Appl. 434, 327 (2011). LAAPAW 0024-3795 10.1016/j.laa.2010.08.026
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.