In vitro evaluation of biocompatibility of uncoated thermally reduced graphene and carbon nanotube-loaded PVDF membranes with adult neural stem cell-derived neurons and glia
[en] Graphene, graphene-based nanomaterials (GBNs), and carbon nanotubes (CNTs) are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies, the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here, we studied the biocompatibility of uncoated thermally reduced graphene (TRG) and poly(vinylidene fluoride) (PVDF) membranes loaded with multi-walled CNTs (MWCNTs) using neural stem cells isolated from the adult mouse olfactory bulb (termed aOBSCs). When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin- PLO/F) in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching, and on MWCNTs-loaded membranes oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Defteralı, Çağla; Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain > Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
Verdejo, Raquel; Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
Majeed, Shahid; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
Boschetti-de-Fierro, Adriana; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
Méndez-Gómez, Héctor R.; Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain > Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
Díaz-Guerra, Eva; Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain > Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
Fierro, Daniel; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
Buhr, Kristian; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
Abetz, Clarissa; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
Martínez-Murillo, Ricardo; Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain
Vuluga, Daniela; University of Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Alexandre, Michaël; University of Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Thomassin, Jean-Michel ; University of Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; University of Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; University of Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Abetz, Volker; Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
López-Manchado, Miguel Ángel; Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
Vicario-Abejón, Carlos; Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain > Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
In vitro evaluation of biocompatibility of uncoated thermally reduced graphene and carbon nanotube-loaded PVDF membranes with adult neural stem cell-derived neurons and glia
Publication date :
06 December 2016
Journal title :
Frontiers in Bioengineering and Biotechnology
eISSN :
2296-4185
Publisher :
Frontiers Research Foundation, Lausanne, Switzerland
Volume :
4
Issue :
n° 64
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 213277 - HARCANA - High Aspect Ratio Carbon-based Nanocomposites
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique CE - Commission Européenne
Akhavan, O., Ghaderi, E., Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons (2013) Nanoscale, 5, pp. 10316-10326
Akhavan, O., Ghaderi, E., Differentiation of human neural stem cells into neural networks on graphene nanogrids (2013) J. Mater. Chem, 1, pp. 6291-6301
Akhavan, O., Ghaderi, E., The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation (2014) Journal of Materials Chemistry B, 2, pp. 5602-5611
Akhavan, O., Ghaderi, E., Abouei, E., Hatamie, S., Ghasemi, E., Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets (2014) Carbon N. Y, 66, pp. 395-406
Akhavan, O., Ghaderi, E., Akhavan, A., Size-dependent genotoxicity of graphene nanoplatelets in human stem cells (2012) Biomaterials, 33, pp. 8017-8025
Akhavan, O., Ghaderi, E., Shirazian, S.A., Near infrared laser stimulation of human neural stem cells intoneurons on graphene nanomesh semiconductors (2015) Colloids Surf. B Biointerfaces, 126, pp. 313-321
Akhavan, O., Ghaderi, E., Shirazian, S.A., Rahighi, R., Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells (2016) Carbon N. Y, 97, pp. 71-77
Alvarez, Z., Mateos-Timoneda, M.A., Hyrossova, P., Castano, O., Planell, J.A., Perales, J.C., The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche (2013) Biomaterials, 34, pp. 2221-2233
Bendali, A., Hess, L.H., Seifert, M., Forster, V., Stephan, A.F., Garrido, J.A., Purified neurons can survive on peptide-free graphene layers (2013) Adv Healthc Mater, 2, pp. 929-933
Bianco, A., Graphene: safe or toxic? The two faces of the medal (2013) Angew. Chem. Int. Ed. Engl, 52, pp. 4986-4997
Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods (2013) Carbon N. Y, 65, pp. 156-164
Bramini, M., Sacchetti, S., Armirotti, A., Rocchi, A., Vazquez, E., Leon Castellanos, V., Graphene oxide nanosheets disrupt lipid composition, Ca(2+) homeostasis, and synaptic transmission in primary cortical neurons (2016) ACS Nano, 10, pp. 7154-7171
Bussy, C., Al-Jamal, K.T., Boczkowski, J., Lanone, S., Prato, M., Bianco, A., Microglia determine brain region-specific neurotoxic responses to chemically functionalized carbon nanotubes (2015) ACS Nano, 9, pp. 7815-7830
Calof, A.L., Campanero, M.R., O'Rear, J.J., Yurchenco, P.D., Lander, A.D., Domain-specific activation of neuronal migration and neurite outgrowth-promoting activities of laminin (1994) Neuron, 13, pp. 117-130
Cellot, G., Ballerini, L., Prato, M., Bianco, A., Neurons are able to internalize soluble carbon nanotubes: new opportunities or old risks? (2010) Small, 6, pp. 2630-2633
Cellot, G., Toma, F.M., Varley, Z.K., Laishram, J., Villari, A., Quintana, M., Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions (2011) J. Neurosci, 31, pp. 12945-12953
Chang, K.A., Kim, J.W., Kim, J.A., Lee, S.E., Kim, S., Suh, W.H., Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells (2011) PLoS ONE, 6
Chang, Y., Yang, S.T., Liu, J.H., Dong, E., Wang, Y., Cao, A., In vitro toxicity evaluation of graphene oxide on A549 cells (2011) Toxicol. Lett, 200, pp. 201-210
Chao, T.I., Xiang, S., Lipstate, J.F., Wang, C., Lu, J., Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells (2010) Adv. Mater, 22, pp. 3542-3547
Chen, T., Yang, J., Ren, G., Yang, Z., Zhang, T., Multi-walled carbon nanotube increases the excitability of hippocampal CA1 neurons through inhibition of potassium channels in rat's brain slices (2013) Toxicol. Lett, 217, pp. 121-128
Defterali, C., Verdejo, R., Peponi, L., Martin, E.D., Martinez-Murillo, R., Lopez-Manchado, M.A., Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb in vivo (2016) Biomaterials, 82, pp. 84-93
Díaz-Guerra, E., Pignatelli, J., Nieto-Estévez, V., Vicario-Abejón, C., Transcriptional regulation of olfactory bulb neurogenesis (2013) Anat Rec (Hoboken), 296, pp. 1364-1382
Dotti, C.G., Sullivan, C.A., Banker, G.A., The establishment of polarity by hippocampal neurons in culture (1988) J. Neurosci, 8, pp. 1454-1468
Fabbro, A., Scaini, D., Leon, V., Vazquez, E., Cellot, G., Privitera, G., Graphene-based interfaces do not alter target nerve cells (2016) ACS Nano, 10, pp. 615-623
Fabbro, A., Sucapane, A., Toma, F.M., Calura, E., Rizzetto, L., Carrieri, C., Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons (2013) PLoS ONE, 8
Gritti, A., Bonfanti, L., Doetsch, F., Caille, I., Álvarez-Buylla, A., Lim, D.A., Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents (2002) J. Neurosci, 22, pp. 437-445
Guo, R., Zhang, S., Xiao, M., Qian, F., He, Z., Li, D., Accelerating bioelectric functional development of neural stem cells by graphene coupling: implications for neural interfacing with conductive materials (2016) Biomaterials, 106, pp. 193-204
Guo, W., Wang, S., Yu, X., Qiu, J., Li, J., Tang, W., Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells (2016) Nanoscale, 8, pp. 1897-1904
Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3, 4-ethylenedioxythiophene) hybrid microfibers (2016) ACS Nano, 10, pp. 5086-5095
Gupta, P., Sharan, S., Roy, P., Lahiri, D., Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration (2015) Carbon N. Y, 95, pp. 715-724
Imayoshi, I., Kageyama, R., bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells (2014) Neuron, 82, pp. 9-23
Jakubek, L.M., Marangoudakis, S., Raingo, J., Liu, X., Lipscombe, D., Hurt, R.H., The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes (2009) Biomaterials, 30, pp. 6351-6357
Jan, E., Kotov, N.A., Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite (2007) Nano Lett, 7, pp. 1123-1128
Jan, Y.N., Jan, L.Y., Branching out: mechanisms of dendritic arborization (2010) Nat. Rev. Neurosci, 11, pp. 316-328
Jin, G.Z., Kim, M., Shin, U.S., Kim, H.W., Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating (2011) Neurosci. Lett, 501, pp. 10-14
John, A.A., Subramanian, A.P., Vellayappan, M.V., Balaji, A., Mohandas, H., Jaganathan, S.K., Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery (2015) Int. J. Nanomedicine, 10, pp. 4267-4277
Lafrenaye, A.D., Fuss, B., Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes (2010) J. Neurochem, 115, pp. 269-282
Lee, J.S., Lipatov, A., Ha, L., Shekhirev, M., Andalib, M.N., Sinitskii, A., Graphene substrate for inducing neurite outgrowth (2015) Biochem. Biophys. Res. Commun, 460, pp. 267-273
Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells (2013) Sci. Rep, 3, p. 1604
Li, N., Zhang, X., Song, Q., Su, R., Zhang, Q., Kong, T., The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates (2011) Biomaterials, 32, pp. 9374-9382
Lopez-Dolado, E., Gonzalez-Mayorga, A., Gutierrez, M.C., Serrano, M.C., Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats (2016) Biomaterials, 99, pp. 72-81
Lorenzoni, M., Brandi, F., Dante, S., Giugni, A., Torre, B., Simple and effective graphene laser processing for neuron patterning application (2013) Sci. Rep, 3, p. 1954
Lv, M., Zhang, Y., Liang, L., Wei, M., Hu, W., Li, X., Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line (2012) Nanoscale, 4, pp. 3861-3866
Malarkey, E.B., Fisher, K.A., Bekyarova, E., Liu, W., Haddon, R.C., Parpura, V., Conductive single-walled carbon nanotube substrates modulate neuronal growth (2009) Nano Lett, 9, pp. 264-268
Marchesan, S., Bosi, S., Alshatwi, A., Prato, M., Carbon nanotubes for organ regeneration: an electrifying performance (2016) Nano Today, 11, pp. 398-401
Marchesan, S., Melchionna, M., Prato, M., Wire up on carbon nanostructures! How to play a winning game (2015) ACS Nano, 9, pp. 9441-9450
Marchesan, S., Prato, M., Under the lens: carbon nanotube and protein interaction at the nanoscale (2015) Chem Commun (Camb), 51, pp. 4347-4359
Meng, L., Jiang, A., Chen, R., Li, C.Z., Wang, L., Qu, Y., Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells (2013) Toxicology, 313, pp. 49-58
Nieto-Estévez, V., Pignatelli, J., Arauzo-Bravo, M.J., Hurtado-Chong, A., Vicario-Abejon, C., A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation (2013) PLoS ONE, 8
Nishimune, H., Valdez, G., Jarad, G., Moulson, C.L., Muller, U., Miner, J.H., Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction (2008) J. Cell Biol, 182, pp. 1201-1215
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Electric field effect in atomically thin carbon films (2004) Science, 306, pp. 666-669
Oliveira, S.F., Bisker, G., Bakh, N.A., Gibbs, S.L., Landry, M.P., Strano, M.S., Protein functionalized carbon nanomaterials for biomedical applications (2015) Carbon N. Y, 95, pp. 767-779
Otaegi, G., de Pablo, F., Vicario-Abejon, C., de la Rosa, E.J., Retinal and olfactory bulb precursor cells show distinct responses to FGF-2 and laminin (2007) Cell Biol. Int, 31, pp. 752-758
Otaegi, G., Yusta-Boyo, M.J., Vergaño-Vera, E., Méndez-Gómez, H.R., Carrera, A.C., Abad, J.L., Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells (2006) J. Cell. Sci, 119, pp. 2739-2748
Park, S.Y., Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H., Enhanced differentiation of human neural stem cells into neurons on graphene (2011) Adv. Mater, 23, pp. H263-H267
Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Functionalized graphene sheets for polymer nanocomposites (2008) Nat. Nanotechnol, 3, pp. 327-331
Rao, C.N., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., Graphene: the new two-dimensional nanomaterial (2009) Angew. Chem. Int. Ed. Engl, 48, pp. 7752-7777
Romasanta, L.J., Hernández, M., López-Manchado, M.A., Verdejo, R., Functionalised graphene sheets as effective high dielectric constant fillers (2011) Nanoscale Res Lett, 6, p. 508
Sahni, D., Jea, A., Mata, J.A., Marcano, D.C., Sivaganesan, A., Berlin, J.M., Biocompatibility of pristine graphene for neuronal interface (2013) J. Neurosurg. Pediatr, 11, pp. 575-583
Sanai, N., Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration (2004) Nature, 427, pp. 740-744
Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method (2008) Nat. Protoc, 3, pp. 1101-1108
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Functionalized single graphene sheets derived from splitting graphite oxide (2006) J. Phys. Chem. B, 110, pp. 8535-8539
Shah, S., Yin, P.T., Uehara, T.M., Chueng, S.T., Yang, L., Lee, K.B., Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds (2014) Adv. Mater, 26, pp. 3673-3680
Shi, S., Chen, F., Ehlerding, E.B., Cai, W., Surface engineering of graphene-based nanomaterials for biomedical applications (2014) Bioconjug. Chem, 25, pp. 1609-1619
Solanki, A., Chueng, S.T., Yin, P.T., Kappera, R., Chhowalla, M., Lee, K.B., Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures (2013) Adv. Mater, 25, pp. 5477-5482
Song, Q., Jiang, Z., Li, N., Liu, P., Liu, L., Tang, M., Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells (2014) Biomaterials, 35, pp. 6930-6940
Specht, C.G., Williams, O.A., Jackman, R.B., Schoepfer, R., Ordered growth of neurons on diamond (2004) Biomaterials, 25, pp. 4073-4078
Spitzer, N.C., Electrical activity in early neuronal development (2006) Nature, 444, pp. 707-712
Tang, M., Song, Q., Li, N., Jiang, Z., Huang, R., Cheng, G., Enhancement of electrical signaling in neural networks on graphene films (2013) Biomaterials, 34, pp. 6402-6411
Tu, Q., Pang, L., Chen, Y., Zhang, Y., Zhang, R., Lu, B., Effects of surface charges of graphene oxide on neuronal outgrowth and branching (2014) Analyst, 139, pp. 105-115
Tu, Q., Pang, L., Wang, L., Zhang, Y., Zhang, R., Wang, J., Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth (2013) ACS Appl Mater Interfaces, 5, pp. 13188-13197
Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets (2013) Nat. Nanotechnol, 8, pp. 594-601
Veliev, F., Briancon-Marjollet, A., Bouchiat, V., Delacour, C., Impact of crystalline quality on neuronal affinity of pristine graphene (2016) Biomaterials, 86, pp. 33-41
Verdejo, R., Barroso-Bujans, F., Rodríguez-Pérez, M.Á., Antonio de Saja, J., López-Manchado, M.á., Functionalized graphene sheet filled silicone foam nanocomposites (2008) J. Mater. Chem, 18, p. 2221
Vergaño-Vera, E., Diaz-Guerra, E., Rodríguez-Traver, E., Méndez-Gómez, H.R., Solís, O., Pignatelli, J., Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes (2015) Dev. Neurobiol, 75, pp. 823-841
Vergaño-Vera, E., Méndez-Gómez, H.R., Hurtado-Chong, A., Cigudosa, J.C., Vicario-Abejon, C., Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells (2009) Neuroscience, 162, pp. 39-54
Vicario, C., Tabernero, A., Medina, J.M., Regulation of lactate metabolism by albumin in rat neurons and astrocytes from primary culture (1993) Pediatr. Res, 34, pp. 709-715
Vicario-Abejón, C., Collin, C., McKay, R.D., Segal, M., Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons (1998) J. Neurosci, 18, pp. 7256-7271
Vicario-Abejón, C., Collin, C., Tsoulfas, P., McKay, R.D., Hippocampal stem cells differentiate into excitatory and inhibitory neurons (2000) Eur. J. Neurosci, 12, pp. 677-688
Vicario-Abejón, C., Johe, K.K., Hazel, T.G., Collazo, D., McKay, R.D., Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons (1995) Neuron, 15, pp. 105-114
Vicario-Abejón, C., Owens, D., McKay, R., Segal, M., Role of neurotrophins in central synapse formation and stabilization (2002) Nat. Rev. Neurosci, 3, pp. 965-974
Vicario-Abejón, C., Yusta-Boyo, M.J., Fernández-Moreno, C., de Pablo, F., Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia (2003) J. Neurosci, 23, pp. 895-906
Vicentini, N., Gatti, T., Salice, P., Scapin, G., Marega, C., Filippini, F., Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nanofibrous matrix boosting neuronal differentiation (2015) Carbon N. Y, 95, pp. 725-730
Vinet, J., Lemieux, P., Tamburri, A., Tiesinga, P., Scafidi, J., Gallo, V., Subclasses of oligodendrocytes populate the mouse hippocampus (2010) Eur. J. Neurosci, 31, pp. 425-438
Weaver, C.L., Cui, X.T., Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite (2015) Adv Healthc Mater, 4, pp. 1408-1416
Wu, D., Pak, E.S., Wingard, C.J., Murashov, A.K., Multi-walled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice (2012) Neurosci. Lett, 507, pp. 72-77
Zhang, Y., Ali, S.F., Dervishi, E., Xu, Y., Li, Z., Casciano, D., Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells (2010) ACS Nano, 4, pp. 3181-3186
Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Supercapacitor performances of thermally reduced graphene oxide (2012) J. Power Sources, 198, pp. 423-427
Zhou, K., Motamed, S., Thouas, G.A., Bernard, C.C., Li, D., Parkington, H.C., Graphene functionalized scaffolds reduce the inflammatory response and supports endogenous neuroblast migration when implanted in the adult brain (2016) PLoS ONE, 11