Abstract :
[en] The quantum theory of the mazer in the nonresonant case (a detuning between the cavity mode and the atomic transition frequencies is present) is described. The generalization from the resonant case is far from being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity may slow down or speed up the atoms according to the sign of the detuning and that the induced emission process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a potential step effect not present at resonance and that the use of positive detunings defines a well-controlled cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the reflection and transmission coefficients have been obtained. The general properties of the induced emission probability are finally discussed in the hot, intermediate, and cold atom regimes. Comparison with the resonant case is given.
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
Scopus citations®
without self-citations
18