[en] Surface mass balance (SMB) variations of the Greenland ice sheet (GrIS) has been identified as an important contributor to contemporary and projected global mean sea level variations but their impact on the regional sea level change pattern is still poorly known. This study provides for the first time, consistent estimates (i.e. computed with the same models over the past -1900-2015- and over the future -2015-2100-) of GrIS SMB over 1900-2100 based on the output of 32 atmospheric-ocean General Circulation Models and Earth system models involved in the Climate Model Intercomparison Project phase 5 (CMIP5). It is based on a downscaling technique calibrated against the MAR regional climate model in order to calculate an ensemble of 32 Greenland SMB estimates at regional scale. Because the GrIS SMB does not respond uniformly to greenhouse gases (GHG) emissions. the southern part of the GrIS is more sensitive to climate warming. This study shows that it should be in imbalance in the 21st century sooner that the northern part. This regional variability affects significantly the associated relative sea level pattern over the entire ocean and particularly along the eastern coast of US and the northern coast of Europe. This highlights the necessity of taking into account GrIS regional SMB changes to evaluate accurately relative sea level changes in future projections.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Meyssignac, B.
Fettweis, Xavier ; Université de Liège > Département de géographie > Climatologie et Topoclimatologie
Chevrier, R.
pada, G.
Language :
English
Title :
Regional sea level changes for the 20th and the 21st century induced by the regional variability in Greenland ice sheet surface mass loss
Publication date :
2017
Journal title :
Journal of Climate
ISSN :
0894-8755
eISSN :
1520-0442
Publisher :
American Meteorological Society
Volume :
online
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alexander, P. M., M. Tedesco, N.-J. Schlegel, S. B. Luthcke, X. Fettweis, and E. Larour, 2016: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012). Cryosphere, 10, 1259-1277, doi:10.5194/tc-10-1259-2016.
Belleflamme, A., X. Fettweis, C. Lang, and M. Erpicum, 2013: Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Climate Dyn., 41, 2061-2080, doi:10.1007/s00382-012-1538-2.
Box, J. E., D. H. Bromwich, and L. S. Bai, 2004: Greenland ice sheet surface mass balance 1991-2000: Application of polar MM5 mesoscale model and in situ data. J. Geophys. Res., 109, D16105, doi:10.1029/2003JD004451.
Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137-1216, doi:10.1017/CBO9781107415324.026.
Chylek, P., M. K. Dubey, and G. Lesins, 2006: Greenland warming of 1920-1930 and 1995-2005. Geophys. Res. Lett., 33, L11707, doi:10.1029/2006GL026510.
Colgan, W., J. E. Box, M. L. Andersen, X. Fettweis, B. Csatho, R. S. Faust, D. Van As, and J. Wahr, 2015: Greenland high-elevation mass balance: Inference and implication of reference period (1961-90) imbalance. Ann. Glaciol., 56, 105-117, doi:10.3189/2015AoG70A967.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
Dziewonski, A., and D. Anderson, 1981: Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 25, 297-356, doi:10.1016/0031-9201(81)90046-7.
Farrell, W. E., and J. A. Clark, 1976: On postglacial sea level. Geophys. J. Int., 46, 647-667, doi:10.1111/j.1365-246X.1976.tb01252.x.
Fettweis, X., 2007: Reconstruction of the 1979-2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1, 21-40, doi:10.5194/tc-1-21-2007.
Fettweis, X., H. Gallee, F. Lefebre, and J. P. van Ypersele, 2005: Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990-1991. Climate Dyn., 24, 623-640, doi:10.1007/s00382-005-0010-y.
Fettweis, X., E. Hanna, H. Gallée, P. Huybrechts, and M. Erpicum, 2008: Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere, 2, 117-129, doi:10.5194/tc-2-117-2008.
Fettweis, X., M. Tedesco, M. van den Broeke, and J. Ettema, 2011: Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models. Cryosphere, 5, 359-375, doi:10.5194/tc-5-359-2011.
Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée, 2013a: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 7, 469-489, doi:10.5194/tc-7-469-2013.
Fettweis, X., E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallee, 2013b: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7, 241-248, doi:10.5194/tc-7-241-2013.
Franco, B., X. Fettweis, C. Lang, and M. Erpicum, 2012: Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990-2010, using the regional climate model MAR. Cryosphere, 6, 695-711, doi:10.5194/tc-6-695-2012.
Franco, B., X. Fettweis, and M. Erpicum, 2013: Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere, 7, 1-18, doi:10.5194/tc-7-1-2013.
Goelzer, H., and Coauthors, 2013: Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol., 59, 733-749, doi:10.3189/2013JoG12J182.
Gomez, N., J. Mitrovica, M. Tamisiea, and P. Clark, 2010: A new projection of sea level change in response to collapse of marine sectors of the Antarctic ice sheet. Geophys. J. Int., 180, 623-634, doi:10.1111/j.1365-246X.2009.04419.x.
Gregory, J. M., and P. Huybrechts, 2006: Ice-sheet contributions to future sea-level change. Philos. Trans. Roy. Soc. London, 364A, 1709-1731, doi:10.1098/rsta.2006.1796.
Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland ice sheet: A response to global warming. J. Climate, 21, 331-341, doi:10.1175/2007JCLI1964.1.
Howat, I. M., I. R. Joughin, and T. A. Scambos, 2007: Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 1559-1561, doi:10.1126/science.1138478.
Kopp, R. E., J. X. Mitrovica, S. M. Griffies, J. Yin, C. C. Hay, and R. J. Stouffer, 2010: The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change, 103, 619-625, doi:10.1007/s10584-010-9935-1.
Lefebre, F., H. Gallee, J. P. van Ypersele, and W. Greuell, 2003: Modeling of snow and ice melt at ETH Camp (West Greenland): A study of surface albedo. J. Geophys. Res., 108, 4231, doi:10.1029/2001JD001160.
Lefebre, F., X. Fettweis, H. Gallee, J. P. Van Ypersele, P. Marbaix, W. Greuell, and P. Calanca, 2005: Evaluation of a high-resolution regional climate simulation over Greenland. Climate Dyn., 25, 99-116, doi:10.1007/s00382-005-0005-8.
Lenaerts, J. T. M., M. R. van den Broeke, J. H. van Angelen, E. van Meijgaard, and S. J. Dery, 2012: Drifting snow climate of the Greenland ice sheet: A study with a regional climate model. Cryosphere, 6, 891-899, doi:10.5194/tc-6-891-2012.
Lenaerts, J. T. M., D. Le Bars, L. van Kampenhout, M. Vizcaino, E. M. Enderlin, and M. R. van den Broeke, 2015: Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett., 42, 6373-6381, doi:10.1002/2015GL064738.
Luo, H., R. M. Castelao, A. K. Rennermalm, M. Tedesco, A. Bracco, P. L. Yager, and T. L. Mote, 2016: Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci., 9, 528-532, doi:10.1038/ngeo2708.
Milne, G. A., and J. X. Mitrovica, 1998: Postglacial sea-level change on a rotating Earth. Geophys. J. Int., 133, 1-19, doi:10.1046/j.1365-246X.1998.1331455.x.
Milne, G. A., W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea, 2009: Identifying the causes of sea-level change. Nat. Geosci., 2, 471-478, doi:10.1038/ngeo544.
Mitrovica, J., M. Tamisiea, J. Davis, and G. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 1026-1029, doi:10.1038/35059054.
Mitrovica, J., N. Gomez, and P. U. Clark, 2009: The sea-level fingerprint of West Antarctic collapse. Science, 323, 753, doi:10.1126/science.1166510.
Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756, doi:10.1038/nature08823.
Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin, 2009: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110-114, doi:10.1038/ngeo394.
Noel, B., W. J. van de Berg, E. van Meijgaard, P. K. Munneke, R. S. W. van de Wal, and M. R. van den Broeke, 2015: Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland ice sheet. Cryosphere, 9, 1831-1844, doi:10.5194/tc-9-1831-2015.
Rae, J. G. L., and Coauthors, 2012: Greenland ice sheet surface mass balance: Evaluating simulations and making projections with regional climate models. Cryosphere, 6, 1275-1294, doi:10.5194/tc-6-1275-2012.
Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. T. M. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL047109.
Sasgen, I., and Coauthors, 2012: Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333-334, 293-303, doi:10.1016/j.epsl.2012.03.033.
Schuenemann, K. C., and J. J. Cassano, 2010: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps. J. Geophys. Res., 115, D05108, doi:10.1029/2009JD011706.
Shannon, S. R., and Coauthors, 2013: Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl. Acad. Sci. USA, 110, 14 156-14 161, doi:10.1073/pnas.1212647110.
Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 1183-1189, doi:10.1126/science.1228102.
Spada, G., and P. Stocchi, 2007: SELEN: A Fortran 90 program for solving the "sea-level equation." Comput. Geosci., 33, 538-562, doi:10.1016/j.cageo.2006.08.006.
Spada, G., D. Melini, G. Galassi, and F. Colleoni, 2012: Modeling sea level changes and geodetic variations by glacial isostasy: The improved SELEN code. ArXiv preprint arXiv:1212.5061, 37 pp. [Available online at https://arxiv.org/abs/1212.5061.].
Stammer, D., 2008: Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res., 113, C06022, doi:10.1029/2006JC004079.
Sundal, A. V., A. Shepherd, P. Nienow, E. Hanna, S. Palmer, and P. Huybrechts, 2011: Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469, 521-524, doi:10.1038/nature09740.
Sundal, A. V., A. Shepherd, M. van den Broeke, J. Van Angelen, N. Gourmelen, and J. Park, 2013: Controls on short-term variations in Greenland glacier dynamics. J. Glaciol., 59, 883-892, doi:10.3189/2013JoG13J019.
Tamisiea, M., and J. Mitrovica, 2011: The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography, 24, 24-39, doi:10.5670/oceanog.2011.25.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMS-D-11-00094.1.
Tedesco, M., and X. Fettweis, 2012: 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet. Environ. Res. Lett., 7, 045405, doi:10.1088/1748-9326/7/4/045405.
Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012, doi:10.1256/qj.04.176.
van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984-986, doi:10.1126/science.1178176.
van den Broeke, M., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 10, 1933-1946, doi:10.5194/tc-10-1933-2016.
Vizcaíno, M., W. H. Lipscomb, W. J. Sacks, and M. van den Broeke, 2014: Greenland surface mass balance as simulated by the Community Earth System Model. Part II: Twenty-first-century changes. J. Climate, 27, 215-226, doi:10.1175/JCLI-D-12-00588.1.
Vizcaíno, M., U. Mikolajewicz, F. Ziemen, C. B. Rodehacke, R. Greve, and M. R. van den Broeke, 2015: Coupled simulations of Greenland ice sheet and climate change up to A.D. 2300. Geophys. Res. Lett., 42, 3927-3935, doi:10.1002/2014GL061142.
Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218-222, doi:10.1126/science.1072708.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.