CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Bode, Gérard H.
Coué, Grégory
Freeze, Christian
Picl, Karin
Sanchez-Purrà, Maria
Albaiges, Berta
Borrós, Savador
van Winden, Ewoud
Tziveleka, Leto-Aikaterini
Sideratou, Z.
Engbersen, J.
Singh, S.
Albrecht
Groll, J.
Moller, Martin
Pötgens, Andy
Schmitz, Christoph
Fröhlich, Eleonore
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
1 Yi, X., et al. Agile delivery of protein therapeutics to CNS. J Control Release 190 (2014), 637–663.
2 Georgieva, J.V., Hoekstra, D., Zuhorn, I.S., Smuggling drugs into the brain: an overview of ligands targeting Transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 6:4 (2014), 557–583.
3 Brasnjevic, I., et al. Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol 87:4 (2009), 212–251.
4 Martinez-Martinez, P., et al. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders. Front Genet, 4, 2013, 181.
5 Petros, R.A., DeSimone, J.M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:8 (2010), 615–627.
6 Eloy, J.O., et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 123 (2014), 345–363.
7 Deshpande, P.P., Biswas, S., Torchilin, V.P., Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8:9 (2013), 1509–1528.
8 Rotman, M., et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. J Control Release 203 (2015), 40–50.
9 Kuo, Y.C., Lin, C.C., Rescuing Apoptotic Neurons in Alzheimer's Disease Using Wheat Germ Agglutinin-Conjugated and Cardiolipin-Conjugated Liposomes with Encapsulated Nerve Growth Factor and Curcumin. 2015 (1178–2013 (Electronic)).
10 van der Meel, R., et al. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195 (2014), 72–85.
11 Fréchet, J.M.J., Tomalia, D.A., Dendrimers and other dendritic polymers. Polymer Science, 2001.
13 Bosman, A.W., Janssen, H.M., Meijer, E.W., About dendrimers: structure, physical properties, and applications. Chem Rev 99:7 (1999), 1665–1688.
14 Huang, Y., et al. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polymer Chemistry 6 (2015), 2794–2812.
15 Calderon, M., et al. Dendritic polyglycerols for biomedical applications. Adv Mater 22:2 (2010), 190–218.
16 Paleos, C.M., et al. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7:12 (2010), 1387–1398.
17 Gillies, E.R., Frechet, J.M., Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:1 (2005), 35–43.
18 Khandare, J., et al. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41:7 (2012), 2824–2848.
19 Mammen, M., Choi, S.-K., Whitesides, G.M., Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:20 (1998), 2754–2794.
20 Fasting, C., et al. Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51:42 (2012), 10472–10498.
21 Herran, E., et al. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease. Int J Nanomedicine 9 (2014), 2677–2687.
22 Vinogradov, S.V., Bronich, T.K., Kabanov, A.V., Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:1 (2002), 135–147.
23 Vermonden, T., Censi, R., Hennink, W.E., Hydrogels for protein delivery. Chem Rev 112:5 (2012), 2853–2888.
24 Chacko, R.T., et al. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:9 (2012), 836–851.
25 Albrecht, K., Moeller, M., Groll, J., Pich, A., Richtering, W., (eds.) Nano- and Microgels through Addition Reactions of Functional Oligomers and Polymers, in Chemical Design of Responsive Microgels, 2011, Springer, Berlin Heidelberg, 65–93.
26 Letchford, K., Burt, H., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:3 (2007), 259–269.
27 Zha, L., Banik, B., Alexis, F., Stimulus responsive nanogels for drug delivery. Soft Matter 7:13 (2011), 5908–5916.
28 Singh, S., et al. Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew Chem Int Ed Engl 52:10 (2013), 3000–3003.
29 Azadi, A., Hamidi, M., Rouini, M.R., Methotrexate-loaded chitosan nanogels as ‘Trojan horses’ for drug delivery to brain: preparation and in vitro/in vivo characterization. Int J Biol Macromol 62 (2013), 523–530.
30 Pardridge, W.M., Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 71:1 (1992), 3–10.
31 Olivier, J.C., et al. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:12 (1999), 1836–1842.
32 Alyautdin, R.N., et al. Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:3 (1997), 325–328.
33 Alyautdin, R.N., et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:1 (1998), 67–74.
34 Kreuter, J., Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:1 (2001), 65–81.
35 Kreuter, J., Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:5 (2004), 484–488.
36 Fernandes, E., et al. New trends in guided nanotherapies for digestive cancers: a systematic review. J Control Release 209 (2015), 288–307.
37 Field, L.D., et al. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?. Acc Chem Res 48:5 (2015), 1380–1390.
38 Wohlfart, S., Gelperina, S., Kreuter, J., Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 161:2 (2012), 264–273.
39 Lajoie, J.M., Shusta, E.V., Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier. Annu Rev Pharmacol Toxicol 55 (2015), 613–631.
40 Kuznetsova, N.R., et al. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release 160:2 (2012), 394–400.
41 Singh, S., et al. Mild oxidation of thiofunctional polymers to cytocompatible and stimuli-sensitive hydrogels and nanogels. Macromol Biosci 13:4 (2013), 470–482.
42 Groll, J., et al. Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J Polym Sci A Polym Chem 47:20 (2009), 5543–5549.
43 Bode, G.H., et al. Detection of peptide-based nanoparticles in blood plasma by ELISA. PLoS One, 10(5), 2015, e0126136.
44 Weksler, B.B., et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:13 (2005), 1872–1874.
45 Demeule, M., et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:3 (2008), 1064–1072.
47 De Jong, W.H., Borm, P.J., Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3:2 (2008), 133–149.
48 Araujo, F., et al. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug Metab Toxicol, 2014, 1–13.
49 Kasper, J., et al. Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Arch Toxicol 87:6 (2013), 1053–1065.
50 Freese, C., et al. Uptake of poly(2-hydroxypropylmethacrylamide)-coated gold nanoparticles in microvascular endothelial cells and transport across the blood–brain barrier. Biomater Sci 1:8 (2013), 824–833.
52 Bockenhoff, A., et al. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase a. J Neurosci 34:9 (2014), 3122–3129.
53 Demeule, M., et al. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest 124:3 (2014), 1199–1213.
54 Bruun, J., et al. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood–brain barrier and glioma cells. Int J Nanomedicine 10 (2015), 5995–6008.
55 Pernot, M., et al. Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol 7:7 (2011), 793–802.