[2] Liszka, M.J., Clark, M.E., Schneider, E., Clark, D.S., Nature versus nurture: developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 3 (2012), 77–102.
[3] Akpinar, O., Erdogan, K., Bostanci, S., Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process 87 (2009), 145–151.
[4] Beltramino, F., Valls, C., Vidal, T., Roncero, M.B., Exploring the effects of treatments with carbohydrases to obtain a high-cellulose content pulp from a non-wood alkaline pulp. Carbohydr. Polym. 133 (2015), 302–312.
[5] Juturu, V., Wu, J.C., Microbial xylanases: engineering, production and industrial applications. Biotechnol. Adv. 30 (2012), 1219–1227.
[6] Kumar, V., Marín-Navarro, J., Shukla, P., Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J. Microbiol. Biotechnol. 32 (2016), 1–10.
[7] Li, H., Gao, X., Demartini, J.D., Kumar, R., Wyman, C.E., Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: dilute alkali. Biotechnol. Bioeng. 110 (2013), 2894–2901.
[8] Wong, K.K., Martin, L.A., Gama, F.M., Saddler, J.N., de Jong, E., Bleach boosting and direct brightening by multiple xylanase treatments during peroxide bleaching of kraft pulps. Biotechnol. Bioeng. 54 (1997), 312–318.
[10] Bai, W., Zhou, C., Zhao, Y., Wang, Q., Ma, Y., Structural insight into and mutational analysis of family 11 xylanases: implications for mechanisms of higher pH catalytic adaptation. PLoS One, 10, 2015, e0132834.
[11] Collins, T., Meuwis, M.A., Stals, I., Claeyssens, M., Feller, G., Gerday, C., A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem. 277 (2002), 35133–35139.
[12] Collins, T., De Vos, D., Hoyoux, A., Savvides, S.N., Gerday, C., Van Beeumen, J., Feller, G., Study of the active site residues of a glycoside hydrolase family 8 xylanase. J. Mol. Biol. 354 (2005), 425–435.
[13] Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328 (2003), 419–428.
[14] De Vos, D., Collins, T., Nerinckx, W., Savvides, S.N., Claeyssens, M., Gerday, C., Feller, G., Van Beeumen, J., Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45 (2006), 4797–4807.
[15] Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Van Beeumen, J., The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J. Biol. Chem. 278 (2003), 7531–7539.
[16] Pollet, A., Schoepe, J., Dornez, E., Strelkov, S.V., Delcour, J.A., Courtin, C.M., Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Appl. Microbiol. Biotechnol. 87 (2010), 2125–2135.
[17] Dornez, E., Verjans, P., Arnaut, F., Delcour, J.A., Courtin, C.M., Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J. Agric. Food Chem. 59 (2011), 9553–9562.
[19] T. Collins, G. Feller, C. Gerday, M.A. Meuwis, Family 8 enzymes with xylanolytic activity, in USPTO Patent (Granted): US8309336 B2 (2012).
[20] Collins, T., Hoyoux, A., Dutron, A., Georis, J., Genot, B., Dauvrin, T., Arnaut, F., Gerday, C., Feller, G., Use of glycoside hydrolase family 8 xylanases in baking. JCS 43 (2006), 79–84.
[21] A. Dutron, J. Georis, B. Genot, T. Dauvrin, T. Collins, A. Hoyoux, G. Feller, Use of family 8 enzymes with xylanolytic activity in baking, in Patents (Granted): US8192772 (2012), EP1549147B1 (2011), CN1681392B (2010), DE60336153 D1 (2011).
[22] Al Balaa, B., Brijs, K., Gebruers, K., Vandenhaute, J., Wouters, J., Housen, I., Xylanase XYL1p from Scytalidium acidophilum: site-directed mutagenesis and acidophilic adaptation. Bioresour. Technol. 100 (2009), 6465–6471.
[23] Chen, Y.C., Chiang, Y.C., Hsu, F.Y., Tsai, L.C., Cheng, H.L., Structural modeling and further improvement in pH stability and activity of a highly-active xylanase from an uncultured rumen fungus. Bioresour. Technol. 123 (2012), 125–134.
[24] Pokhrel, S., Joo, J.C., Kim, Y.H., Yoo, Y.J., Rational design of a Bacillus circulans xylanase by introducing charged residue to shift the pH optimum. Process Biochem. 47 (2012), 2487–2493.
[25] Joshi, M.D., Sidhu, G., Nielsen, J.E., Brayer, G.D., Withers, S.G., McIntosh, L.P., Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40 (2001), 10115–10139.
[26] Mamo, G., Thunnissen, M., Hatti-Kaul, R., Mattiasson, B., An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91 (2009), 1187–1196.
[27] Beliën, T., Joye, I.J., Delcour, J.A., Courtin, C.M., Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Protein Eng. Des. Sel. 22 (2009), 587–596.
[28] Li, Y., Cirino, P.C., Recent advances in engineering proteins for biocatalysis. Biotechnol. Bioeng. 111 (2014), 1273–1287.
[30] Pace, C.N., Measuring and increasing protein stability. Trends Biotechnol. 8 (1990), 93–98.
[31] Collins, T., Azevedo-Silva, J., da Costa, A., Branca, F., Machado, R., Casal, M., Batch production of a silk-elastin-like protein in E. coli BL21(DE3): key parameters for optimisation. Microb. Cell Fact., 12, 2013, 21.
[32] Sambrook, J., Russell, D.W., Molecular Cloning A Laboratory Manual. 3rd ed., 2001, Cold Spring Harbor Laboratory Press, New York.
[33] Collins, T., Barroca, M., Branca, F., Padrao, J., Machado, R., Casal, M., High level biosynthesis of a silk-elastin-like protein in E. coli. Biomacromolecules 15 (2014), 2701–2708.
[34] De Lemos Esteves, F., Gouders, T., Lamotte-Brasseur, J., Rigali, S., Frere, J.M., Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis. Protein Sci. 14 (2005), 292–302.
[35] Nielsen, J.E., Borchert, T.V., Vriend, G., The determinants of alpha-amylase pH-activity profiles. Protein Eng. 14 (2001), 505–512.
[36] Adachi, W., Sakihama, Y., Shimizu, S., Sunami, T., Fukazawa, T., Suzuki, M., Yatsunami, R., Nakamura, S., Takenaka, A., Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J. Mol. Biol. 343 (2004), 785–795.
[37] Lakowicz, J.R., Protein fluorescence. Lakowicz, J.R., (eds.) Principles of Fluorescence Spectroscopy, 2006, Springer, Boston, MA, US, 529–575.
[38] Fraczkiewicz, R., Braun, W., Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19 (1998), 319–333.
[39] Shaw, K.L., Grimsley, G.R., Yakovlev, G.I., Makarov, A.A., Pace, C.N., The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 10 (2001), 1206–1215.
[40] Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., Van Beeumen, J., Crystallization and preliminary X-ray analysis of a xylanase from the psychrophile Pseudoalteromonas haloplanktis. Acta Crystallogr. D: Biol. Crystallogr. 58 (2002), 1494–1496.
[41] Collins, T., D'Amico, S., Georlette, D., Marx, J.C., Huston, A.L., Feller, G., A nondetergent sulfobetaine prevents protein aggregation in microcalorimetric studies. Anal. Biochem. 352 (2006), 299–301.
[42] Gsponer, J., Vendruscolo, M., Theoretical approaches to protein aggregation. Protein Pept. Lett. 13 (2006), 287–293.
[43] Trevino, S.R., Scholtz, J.M., Pace, C.N., Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J. Mol. Biol. 366 (2007), 449–460.