Reference : Aeroservoelastic Simulations for Horizontal Axis Wind Turbines
Scientific journals : Article
Engineering, computing & technology : Energy
Engineering, computing & technology : Aerospace & aeronautics engineering
http://hdl.handle.net/2268/202543
Aeroservoelastic Simulations for Horizontal Axis Wind Turbines
English
Prasad, Chandra Shekhar mailto [Université de Liège - ULiège > > > Form. doct. sc. ingé. & techno. (aéro. & mécan. - Paysage)]
Chen, Qiong Zhong [Université de Liège - ULiège > Aérospatiale et mécanique > > >]
Bruls, Olivier mailto [Université de Liège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques >]
D'Ambrosio, Flavio [Siemens PLM Software > LMS Samtech > > >]
Dimitriadis, Grigorios mailto [Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
2017
Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy
SAGE
231
2
103-117
Yes (verified by ORBi)
International
0957-6509
2041-2967
London
United Kingdom
[en] Horizontal Axis Wind Turbines ; Aeroservoelasticity ; Non-linear Finite Elements ; Unsteady Vortex Lattice Method ; Doubly Fed Induction Generator
[en] This paper describes the development of a complete methodology for the aeroservoelastic modeling of horizontal axis wind turbines at the conceptual design stage. The methodology is based on the implementation of unsteady aerodynamic modeling, advanced description of the control system and nonlinear finite element calculations in the SWT wind turbine design package. The aerodynamic modeling is carried out by means of fast techniques, such as the Blade Element Method and the unsteady Vortex Lattice Method, including a free wake model. The complete model also includes a description of a doubly fed induction generator and its control system for variable speed operation. The SWT software features a non-linear finite element solver with multi-body dynamics capability. The full methodology is used to perform complete aeroservoelastic simulations of a realistic 2MW wind turbine model. The interaction between the three components of the approach is carefully analyzed and presented here.
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Energie
Researchers ; Professionals
http://hdl.handle.net/2268/202543
10.1177/0957650916678725
http://journals.sagepub.com/doi/pdf/10.1177/0957650916678725

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
42 Proc IMechE part A, Wind Turbine.pdfPublisher postprint917.17 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.