Article (Scientific journals)
Dealing with paralogy in RADseq data: in silico detection and single nucleotide polymorphism validation in Robinia pseudoacacia L.
Verdu, Cindy; Guichoux, E.; Quevauvillers, S. et al.
2016In Ecology and Evolution, p. 11
Peer Reviewed verified by ORBi
 

Files


Full Text
Verdu_et_al-Ecology_and_Evolution_PR2016.pdf
Publisher postprint (820.38 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
black locust; depth of coverage; putative paralogy filtering; restriction site-associated DNA sequencing
Abstract :
[en] The RADseq technology allows researchers to efficiently develop thousands of polymorphic loci across multiple individuals with little or no prior information on the genome. However, many questions remain about the biases inherent to this technology. Notably, sequence misalignments arising from paralogy may affect the development of single nucleotide polymorphism (SNP) markers and the estimation of genetic diversity. We evaluated the impact of putative paralog loci on genetic diversity estimation during the development of SNPs from a RADseq dataset for the nonmodel tree species Robinia pseudoacacia L. We sequenced nine genotypes and analyzed the frequency of putative paralogous RAD loci as a function of both the depth of coverage and the mismatch threshold allowed between loci. Putative paralogy was detected in a very variable number of loci, from 1% to more than 20%, with the depth of coverage having a major influence on the result. Putative paralogy artificially increased the observed degree of polymorphism and resulting estimates of diversity. The choice of the depth of coverage also affected diversity estimation and SNP validation: A low threshold decreased the chances of detecting minor alleles while a high threshold increased allelic dropout. SNP validation was better for the low threshold (4×) than for the high threshold (18×) we tested. Using the strategy developed here, we were able to validate more than 80% of the SNPs tested by means of individual genotyping, resulting in a readily usable set of 330 SNPs, suitable for use in population genetics applications.
Disciplines :
Agriculture & agronomy
Genetics & genetic processes
Phytobiology (plant sciences, forestry, mycology...)
Author, co-author :
Verdu, Cindy 
Guichoux, E.
Quevauvillers, S.
De Thier, O.
Laizet, Y.
Delcamp, A.
Gévaudant, F.
Monty, Arnaud ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Porté, A.J.
Lejeune, Philippe
Mariette, S.
Lassois, Ludivine  ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Dealing with paralogy in RADseq data: in silico detection and single nucleotide polymorphism validation in Robinia pseudoacacia L.
Publication date :
2016
Journal title :
Ecology and Evolution
eISSN :
2045-7758
Publisher :
Wiley
Pages :
11
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 October 2016

Statistics


Number of views
102 (17 by ULiège)
Number of downloads
86 (5 by ULiège)

Scopus citations®
 
28
Scopus citations®
without self-citations
25
OpenCitations
 
23
OpenAlex citations
 
34

Bibliography


Similar publications



Contact ORBi