[en] Evapotranspiration (ET) controls the flux between the land surface and the atmosphere. Assessing the ET ecosystems remains a key challenge in hydrology. We have found that the ET water mass loss can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution of water decreases, changing the gravity field. Using continuous superconducting gravity measurements, we were able to identify daily gravity changes at the level of, or smaller than, 10-9 nms-2 (or 10-10 g) per day. This corresponds to 1.7mmof water over an area of 50 ha. The strength of this method is its ability to enable a direct, traceable and continuous monitoring of actual ET for years at the mesoscale with a high accuracy.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Van Camp, Michel; Royal Observatory of Belgium, Uccle, Belgium > Seismology-Gravimetry
de Viron, Olivier; Université de La Rochelle and CNRS (UMR7266) > Littoral, Environnement et Sociétés
Pajot-Métivier, Gwendoline; Université Paris Diderot, Sorbonne Paris Cité > IGN LAREG
Casenave, Fabien; Université Paris Diderot, Sorbonne Paris Cité > IGN LAREG
Watlet, Arnaud; Université de Mons-Hainaut - UMH > Faculty of Engineering > Geology and Applied Geology Unit
Dassargues, Alain ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Vanclooster, Marnik; Université Catholique de Louvain - UCL > Earth and Life Institute
Language :
English
Title :
Direct measurement of evapotranspiration from a forest using a superconducting gravimeter
Publication date :
13 September 2016
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), FAO irrigation and drainage paper No. 56, Rome Food Agric. Organ. U. N., 26–40.
Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat (2001), Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agric. For. Meteorol., 108, 293–315, doi:10.1016/S0168-1923(01)00244-1.
Baldocchi, D. D., and Y. Ryu (2011), A synthesis of forest evaporation fluxes—from days to years—as measured with eddy covariance, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, vol. 216 of Springer Series in Ecological Studies, edited by D. F. Del Lavia, D. E. Carlyle-Moses, and T. Tanaka, pp. 101–116, Springer, Dordrecht, Netherlands, doi:10.1007/978-94-007-1363-5_5.
Barr, A. G., G. van der Kamp, R. Schmidt, and T. Andrew Black (2000), Monitoring the moisture balance of a boreal aspen forest using a deep groundwater piezometer, Agric. For. Meteorol., 102, 13–24, doi:10.1016/S0168-1923(00)00094-0.
Caldwell, M. M., T. E. Dawson, and J. H. Richards (1998), Hydraulic lift: Consequences of water efflux from the roots of plants, Oecologia, 113, 151–161.
Creutzfeldt, B., A. Güntner, T. Klügel, and H. Wziontek (2008), Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany, Geophysics, 73(6), doi:10.1190/1.2992508.
Davies-Smith, A., E. L. Bolke, and C. A. Collins (1988), Geohydrology and digital simulation of the ground-water flow system in the Umatilla Plateau and Horse Heaven Hills area, Oregon and Washington, U.S. Geol. Surv. Water Res. Inv. Rep., 87-4268.
Goodkind, J. M. (1999), The superconducting gravimeter, Rev. Sci. Instrum., 70, 4131–4152, doi:10.1063/1.1150092.
Hartmann, T., and H.-G. Wenzel (1995), The HW95 tidal potential catalogue, Geophys. Res. Lett., 22, 3553–3556, doi:10.1029/95GL03324.
Hinderer, J., D. Crossley, and R. J. Warburton (2007), Gravimetric methods—Superconducting gravity meters, in Treatise on Geophysics, edited by T. Herring and G. Schubert, vol. 3, pp. 65–122, Elsevier, Amsterdam, doi:10.1016/B978-044452748-6/00172-3.
Hupet, F., P. Bogaert, and M. Vanclooster (2004), Quantifying the local scale uncertainty of estimated actual evapotranspiration, Hydrol. Process., 18, 3415–3434, doi:10.1002/hyp.1504.
Jiménez, C., et al. (2011), Global intercomparison of 12 land surface heat flux estimates, J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.
Kelliher, F. M., R. Leuning, and E.-D. Schulze (1993), Evaporation and canopy characteristics of coniferous forests and grasslands, Oecologia, 95, 153–163.
Kosugi, K., S. Katsura, M. Katsuyama, and T. Mizuyama (2006), Water flow processes in weathered granitic bedrock and their effects on runoff generation in a small headwater catchment, Water Resour. Res., 42, W02414, doi:10.1029/2005WR004275.
Kurc, S. A., and E. E. Small (2004), Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico, Water Resour. Res., 40, W09305, doi:10.1029/2004WR003068.
Meurers, B., M. Van Camp, and T. Petermans (2007), Correcting gravity time series using rainfall modeling at the Vienna and Membach stations and application to Earth tide analysis, J. Geod., 81, 703–712, doi:10.1007/s00190-007-0137-1.
Monteith, J. L. (1965), Evaporation and environment, Symp. Soc. Expl. Biol., 19, 205–234.
Müller, J., and A. Bolte (2010), Forest hydrology research with lysimeter in the northeast German lowlands special methods and results for the forest management, in Soil Solutions for a Changing World : Proceedings of the 19th World Congress of Soil Science, edited by R. J. Gilkes and N. Prakongkep, pp. 28–31.
Okabe, M. (1979), Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies, Geophysics, 44, 730–741, doi:10.1190/1.1440973.
Oki, T., and S. Kanae (2006), Global hydrological cycles and world water resources, Science, 313, 1068–1072, doi:10.1126/science.1128845.
Peel, M. C., B. L. Finlayson, and T. A. McMahon (2007), Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci. Discuss., 11, 1633–1644, doi:10.5194/hess-11-1633-2007.
Polzer, G., W. Zürn, and H.-G. Wenzel (1996), NDFW analysis of gravity, strain, and tilt data from BFO, Bull. Inf. Marées Terrestres, 125, 9514–9545.
Rana, G., and N. Katerji (2000), Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review, Eur. J. Agron., 13, 125–153, doi:10.1016/S1161-0301(00)00070-8.
Robert, C., and G. Casella (2004), Monte Carlo Statistical Methods, Springer, New-York, doi:10.1007/978-1-4757-4145-2.
Robinson, M., et al. (2003), Studies of the impact of forests on peak flows and baseflows: A European perspective, For. Ecol. Manage., 186, 85–97, doi:10.1016/S0378-1127(03)00238-X.
Rost, S., D. Gerten, A. Bondeau, W. Luncht, J. Rohwer, and S. Schaphoff (2008), Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09405, doi:10.1029/2007WR00633.
Schelde, K., R. Ringgaard, M. Herbst, A. Thomsen, T. Friborg, and H. Søgaard (2011), Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements, Vadose Zone J., 10, 78–83, doi:10.2136/vzj2010.0060.
Shi, T.-T., D.-X. Guan, J.-B. Wu, A.-Z. Wang, C.-J. Jin, and S.-J. Han (2008), Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation, J. Geophys. Res., 113, D19116, doi:10.1029/2008JD010174.
Shukla, J., and Y. Mintz (1981), Influence of land-surface evapotranspiration on the Earth's climate, Science, 215, 1498–1501, doi:10.1126/science.215.4539.1498.
Soubie, R. (2014) Evaluation de l'évapotranspiration réelle, de ses composantes et de sa régulation dans un peuplement composé de hêtres et de douglas: Analyse comparative de l'effet espèce et des méthodes d'évaluation, thesis, Université Catholique de Louvain.
Sun, G., G. Zhou, Z. Zhangc, X. Wei, S. G. McNulty, and J. M. Vose (2006), Potential water yield reduction due to reforestation across China, J. Hydrol., 328, 548–558, doi:10.1016/j.jhydrol.2005.12.013.
Van Camp, M., S. D. P. Williams, and O. Francis (2005), Uncertainty of absolute gravity measurements, J. Geophys. Res., 110, B05406, doi:10.1029/2004JB003497.
Van Camp, M., M. Vanclooster, O. Crommen, T. Petermans, K. Verbeeck, B. Meurers, T. van Dam, and A. Dassargues (2006), Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations, J. Geophys. Res., 111, B10403, doi:10.1029/2006JB004405.
Verstraeten, W. W., B. Muys, J. Feyen, F. Veroustraete, M. Minnaert, L. Meiresonne, and A. de Schrijver (2005), Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE, Hydrol. Earth Syst. Sci., 9, 225–241, doi:10.5194/hess-9-225-2005.
Verstraeten, W. W., F. Veroustraete, and J. Feyen (2008), Assessment of evapotranspiration and soil moisture content across different scales of observation, Sensors, 8, 70–117, doi:10.3390/s8010070.
Wenzel, H.-G. (1996), The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, 124, 9425–9439.
Wilson, K. B., P. J. Hanson, P. J. Mulholland, D. D. Baldocchi, and S. D. Wullschleger (2001), A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance, Agric. For. Meteorol., 106, 153–168, doi:10.1016/S0168-1923(00)00199-4.